Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
-9\times \frac{1}{3}-\frac{3n}{n}\times \frac{3n}{n-3n}
Cancel out n in both numerator and denominator.
\frac{-9}{3}-\frac{3n}{n}\times \frac{3n}{n-3n}
Multiply -9 and \frac{1}{3} to get \frac{-9}{3}.
-3-\frac{3n}{n}\times \frac{3n}{n-3n}
Divide -9 by 3 to get -3.
-3-3\times \frac{3n}{n-3n}
Cancel out n in both numerator and denominator.
-3-3\times \frac{3n}{-2n}
Combine n and -3n to get -2n.
-3-3\times \frac{3}{-2}
Cancel out n in both numerator and denominator.
-3-3\left(-\frac{3}{2}\right)
Fraction \frac{3}{-2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
-3-\frac{3\left(-3\right)}{2}
Express 3\left(-\frac{3}{2}\right) as a single fraction.
-3-\frac{-9}{2}
Multiply 3 and -3 to get -9.
-3-\left(-\frac{9}{2}\right)
Fraction \frac{-9}{2} can be rewritten as -\frac{9}{2} by extracting the negative sign.
-3+\frac{9}{2}
The opposite of -\frac{9}{2} is \frac{9}{2}.
-\frac{6}{2}+\frac{9}{2}
Convert -3 to fraction -\frac{6}{2}.
\frac{-6+9}{2}
Since -\frac{6}{2} and \frac{9}{2} have the same denominator, add them by adding their numerators.
\frac{3}{2}
Add -6 and 9 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}