Solve for p
p<-3
Share
Copied to clipboard
-9+32p+12-24p<4p-9
Use the distributive property to multiply 4 by 8p+3.
3+32p-24p<4p-9
Add -9 and 12 to get 3.
3+8p<4p-9
Combine 32p and -24p to get 8p.
3+8p-4p<-9
Subtract 4p from both sides.
3+4p<-9
Combine 8p and -4p to get 4p.
4p<-9-3
Subtract 3 from both sides.
4p<-12
Subtract 3 from -9 to get -12.
p<\frac{-12}{4}
Divide both sides by 4. Since 4 is positive, the inequality direction remains the same.
p<-3
Divide -12 by 4 to get -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}