Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(4c^{2}-9a^{2}b^{2}\right)\left(4c^{2}+9a^{2}b^{2}\right)
Rewrite -81a^{4}b^{4}+16c^{4} as \left(4c^{2}\right)^{2}-\left(9a^{2}b^{2}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(-9a^{2}b^{2}+4c^{2}\right)\left(9a^{2}b^{2}+4c^{2}\right)
Reorder the terms.
\left(2c-3ab\right)\left(2c+3ab\right)
Consider -9a^{2}b^{2}+4c^{2}. Rewrite -9a^{2}b^{2}+4c^{2} as \left(2c\right)^{2}-\left(3ab\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(-3ab+2c\right)\left(3ab+2c\right)
Reorder the terms.
\left(-3ab+2c\right)\left(3ab+2c\right)\left(9a^{2}b^{2}+4c^{2}\right)
Rewrite the complete factored expression.