Evaluate
\frac{111694433}{6750}\approx 16547.323407407
Factor
\frac{97 \cdot 277 \cdot 4157}{2 \cdot 3 ^ {3} \cdot 5 ^ {3}} = 16547\frac{2183}{6750} = 16547.323407407406
Share
Copied to clipboard
-3741.3\left(-2.04-\frac{1176}{450}+2.1\times 10^{7}\times \left(\frac{1}{450}\right)^{3}\right)
Multiply -8.314 and 450 to get -3741.3.
-3741.3\left(-2.04-\frac{196}{75}+2.1\times 10^{7}\times \left(\frac{1}{450}\right)^{3}\right)
Reduce the fraction \frac{1176}{450} to lowest terms by extracting and canceling out 6.
-3741.3\left(-\frac{51}{25}-\frac{196}{75}+2.1\times 10^{7}\times \left(\frac{1}{450}\right)^{3}\right)
Convert decimal number -2.04 to fraction -\frac{204}{100}. Reduce the fraction -\frac{204}{100} to lowest terms by extracting and canceling out 4.
-3741.3\left(-\frac{153}{75}-\frac{196}{75}+2.1\times 10^{7}\times \left(\frac{1}{450}\right)^{3}\right)
Least common multiple of 25 and 75 is 75. Convert -\frac{51}{25} and \frac{196}{75} to fractions with denominator 75.
-3741.3\left(\frac{-153-196}{75}+2.1\times 10^{7}\times \left(\frac{1}{450}\right)^{3}\right)
Since -\frac{153}{75} and \frac{196}{75} have the same denominator, subtract them by subtracting their numerators.
-3741.3\left(-\frac{349}{75}+2.1\times 10^{7}\times \left(\frac{1}{450}\right)^{3}\right)
Subtract 196 from -153 to get -349.
-3741.3\left(-\frac{349}{75}+2.1\times 10000000\times \left(\frac{1}{450}\right)^{3}\right)
Calculate 10 to the power of 7 and get 10000000.
-3741.3\left(-\frac{349}{75}+21000000\times \left(\frac{1}{450}\right)^{3}\right)
Multiply 2.1 and 10000000 to get 21000000.
-3741.3\left(-\frac{349}{75}+21000000\times \frac{1}{91125000}\right)
Calculate \frac{1}{450} to the power of 3 and get \frac{1}{91125000}.
-3741.3\left(-\frac{349}{75}+\frac{21000000}{91125000}\right)
Multiply 21000000 and \frac{1}{91125000} to get \frac{21000000}{91125000}.
-3741.3\left(-\frac{349}{75}+\frac{56}{243}\right)
Reduce the fraction \frac{21000000}{91125000} to lowest terms by extracting and canceling out 375000.
-3741.3\left(-\frac{28269}{6075}+\frac{1400}{6075}\right)
Least common multiple of 75 and 243 is 6075. Convert -\frac{349}{75} and \frac{56}{243} to fractions with denominator 6075.
-3741.3\times \frac{-28269+1400}{6075}
Since -\frac{28269}{6075} and \frac{1400}{6075} have the same denominator, add them by adding their numerators.
-3741.3\left(-\frac{26869}{6075}\right)
Add -28269 and 1400 to get -26869.
-\frac{37413}{10}\left(-\frac{26869}{6075}\right)
Convert decimal number -3741.3 to fraction -\frac{37413}{10}.
\frac{-37413\left(-26869\right)}{10\times 6075}
Multiply -\frac{37413}{10} times -\frac{26869}{6075} by multiplying numerator times numerator and denominator times denominator.
\frac{1005249897}{60750}
Do the multiplications in the fraction \frac{-37413\left(-26869\right)}{10\times 6075}.
\frac{111694433}{6750}
Reduce the fraction \frac{1005249897}{60750} to lowest terms by extracting and canceling out 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}