Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-8x^{2}+14x=-15
Add 14x to both sides.
-8x^{2}+14x+15=0
Add 15 to both sides.
a+b=14 ab=-8\times 15=-120
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -8x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -120.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
Calculate the sum for each pair.
a=20 b=-6
The solution is the pair that gives sum 14.
\left(-8x^{2}+20x\right)+\left(-6x+15\right)
Rewrite -8x^{2}+14x+15 as \left(-8x^{2}+20x\right)+\left(-6x+15\right).
-4x\left(2x-5\right)-3\left(2x-5\right)
Factor out -4x in the first and -3 in the second group.
\left(2x-5\right)\left(-4x-3\right)
Factor out common term 2x-5 by using distributive property.
x=\frac{5}{2} x=-\frac{3}{4}
To find equation solutions, solve 2x-5=0 and -4x-3=0.
-8x^{2}+14x=-15
Add 14x to both sides.
-8x^{2}+14x+15=0
Add 15 to both sides.
x=\frac{-14±\sqrt{14^{2}-4\left(-8\right)\times 15}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 14 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-8\right)\times 15}}{2\left(-8\right)}
Square 14.
x=\frac{-14±\sqrt{196+32\times 15}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-14±\sqrt{196+480}}{2\left(-8\right)}
Multiply 32 times 15.
x=\frac{-14±\sqrt{676}}{2\left(-8\right)}
Add 196 to 480.
x=\frac{-14±26}{2\left(-8\right)}
Take the square root of 676.
x=\frac{-14±26}{-16}
Multiply 2 times -8.
x=\frac{12}{-16}
Now solve the equation x=\frac{-14±26}{-16} when ± is plus. Add -14 to 26.
x=-\frac{3}{4}
Reduce the fraction \frac{12}{-16} to lowest terms by extracting and canceling out 4.
x=-\frac{40}{-16}
Now solve the equation x=\frac{-14±26}{-16} when ± is minus. Subtract 26 from -14.
x=\frac{5}{2}
Reduce the fraction \frac{-40}{-16} to lowest terms by extracting and canceling out 8.
x=-\frac{3}{4} x=\frac{5}{2}
The equation is now solved.
-8x^{2}+14x=-15
Add 14x to both sides.
\frac{-8x^{2}+14x}{-8}=-\frac{15}{-8}
Divide both sides by -8.
x^{2}+\frac{14}{-8}x=-\frac{15}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}-\frac{7}{4}x=-\frac{15}{-8}
Reduce the fraction \frac{14}{-8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{4}x=\frac{15}{8}
Divide -15 by -8.
x^{2}-\frac{7}{4}x+\left(-\frac{7}{8}\right)^{2}=\frac{15}{8}+\left(-\frac{7}{8}\right)^{2}
Divide -\frac{7}{4}, the coefficient of the x term, by 2 to get -\frac{7}{8}. Then add the square of -\frac{7}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{15}{8}+\frac{49}{64}
Square -\frac{7}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{169}{64}
Add \frac{15}{8} to \frac{49}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{8}\right)^{2}=\frac{169}{64}
Factor x^{2}-\frac{7}{4}x+\frac{49}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{8}\right)^{2}}=\sqrt{\frac{169}{64}}
Take the square root of both sides of the equation.
x-\frac{7}{8}=\frac{13}{8} x-\frac{7}{8}=-\frac{13}{8}
Simplify.
x=\frac{5}{2} x=-\frac{3}{4}
Add \frac{7}{8} to both sides of the equation.