Factor
\left(3-4r\right)\left(2r-5\right)
Evaluate
\left(3-4r\right)\left(2r-5\right)
Share
Copied to clipboard
a+b=26 ab=-8\left(-15\right)=120
Factor the expression by grouping. First, the expression needs to be rewritten as -8r^{2}+ar+br-15. To find a and b, set up a system to be solved.
1,120 2,60 3,40 4,30 5,24 6,20 8,15 10,12
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 120.
1+120=121 2+60=62 3+40=43 4+30=34 5+24=29 6+20=26 8+15=23 10+12=22
Calculate the sum for each pair.
a=20 b=6
The solution is the pair that gives sum 26.
\left(-8r^{2}+20r\right)+\left(6r-15\right)
Rewrite -8r^{2}+26r-15 as \left(-8r^{2}+20r\right)+\left(6r-15\right).
-4r\left(2r-5\right)+3\left(2r-5\right)
Factor out -4r in the first and 3 in the second group.
\left(2r-5\right)\left(-4r+3\right)
Factor out common term 2r-5 by using distributive property.
-8r^{2}+26r-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
r=\frac{-26±\sqrt{26^{2}-4\left(-8\right)\left(-15\right)}}{2\left(-8\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-26±\sqrt{676-4\left(-8\right)\left(-15\right)}}{2\left(-8\right)}
Square 26.
r=\frac{-26±\sqrt{676+32\left(-15\right)}}{2\left(-8\right)}
Multiply -4 times -8.
r=\frac{-26±\sqrt{676-480}}{2\left(-8\right)}
Multiply 32 times -15.
r=\frac{-26±\sqrt{196}}{2\left(-8\right)}
Add 676 to -480.
r=\frac{-26±14}{2\left(-8\right)}
Take the square root of 196.
r=\frac{-26±14}{-16}
Multiply 2 times -8.
r=-\frac{12}{-16}
Now solve the equation r=\frac{-26±14}{-16} when ± is plus. Add -26 to 14.
r=\frac{3}{4}
Reduce the fraction \frac{-12}{-16} to lowest terms by extracting and canceling out 4.
r=-\frac{40}{-16}
Now solve the equation r=\frac{-26±14}{-16} when ± is minus. Subtract 14 from -26.
r=\frac{5}{2}
Reduce the fraction \frac{-40}{-16} to lowest terms by extracting and canceling out 8.
-8r^{2}+26r-15=-8\left(r-\frac{3}{4}\right)\left(r-\frac{5}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{4} for x_{1} and \frac{5}{2} for x_{2}.
-8r^{2}+26r-15=-8\times \frac{-4r+3}{-4}\left(r-\frac{5}{2}\right)
Subtract \frac{3}{4} from r by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-8r^{2}+26r-15=-8\times \frac{-4r+3}{-4}\times \frac{-2r+5}{-2}
Subtract \frac{5}{2} from r by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-8r^{2}+26r-15=-8\times \frac{\left(-4r+3\right)\left(-2r+5\right)}{-4\left(-2\right)}
Multiply \frac{-4r+3}{-4} times \frac{-2r+5}{-2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-8r^{2}+26r-15=-8\times \frac{\left(-4r+3\right)\left(-2r+5\right)}{8}
Multiply -4 times -2.
-8r^{2}+26r-15=-\left(-4r+3\right)\left(-2r+5\right)
Cancel out 8, the greatest common factor in -8 and 8.
x ^ 2 -\frac{13}{4}x +\frac{15}{8} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{13}{4} rs = \frac{15}{8}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{13}{8} - u s = \frac{13}{8} + u
Two numbers r and s sum up to \frac{13}{4} exactly when the average of the two numbers is \frac{1}{2}*\frac{13}{4} = \frac{13}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{13}{8} - u) (\frac{13}{8} + u) = \frac{15}{8}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{15}{8}
\frac{169}{64} - u^2 = \frac{15}{8}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{15}{8}-\frac{169}{64} = -\frac{49}{64}
Simplify the expression by subtracting \frac{169}{64} on both sides
u^2 = \frac{49}{64} u = \pm\sqrt{\frac{49}{64}} = \pm \frac{7}{8}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{13}{8} - \frac{7}{8} = 0.750 s = \frac{13}{8} + \frac{7}{8} = 2.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}