Type a math problem

This site uses cookies for analytics, personalized content and ads. By continuing to browse this site, you agree to this use. Learn more

Type a math problem

Solve for y

y = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333

$y=−37 =−231 ≈−2.333333333$

Steps for Solving Linear Equation

- 8 - 8 y = 6 - 2 y

$−8−8y=6−2y$

Add 2y to both sides.

Add $2y$ to both sides.

-8-8y+2y=6

$−8−8y+2y=6$

Combine -8y and 2y to get -6y.

Combine $−8y$ and $2y$ to get $−6y$.

-8-6y=6

$−8−6y=6$

Add 8 to both sides.

Add $8$ to both sides.

-6y=6+8

$−6y=6+8$

Add 6 and 8 to get 14.

Add $6$ and $8$ to get $14$.

-6y=14

$−6y=14$

Divide both sides by -6.

Divide both sides by $−6$.

y=\frac{14}{-6}

$y=−614 $

Reduce the fraction \frac{14}{-6}\approx -2.333333333 to lowest terms by extracting and canceling out 2.

Reduce the fraction $−614 ≈−2.333333333$ to lowest terms by extracting and canceling out $2$.

y=-\frac{7}{3}

$y=−37 $

Graph

Giving is as easy as 1, 2, 3

Get 1,000 points to donate to a school of your choice when you join Give With Bing

Share

Copy

Copied to clipboard

-8-8y+2y=6

Add 2y to both sides.

-8-6y=6

Combine -8y and 2y to get -6y.

-6y=6+8

Add 8 to both sides.

-6y=14

Add 6 and 8 to get 14.

y=\frac{14}{-6}

Divide both sides by -6.

y=-\frac{7}{3}

Reduce the fraction \frac{14}{-6}\approx -2.333333333 to lowest terms by extracting and canceling out 2.

Examples

Quadratic equation

{ x } ^ { 2 } - 4 x - 5 = 0

$x_{2}−4x−5=0$

Trigonometry

4 \sin \theta \cos \theta = 2 \sin \theta

$4sinθcosθ=2sinθ$

Linear equation

y = 3x + 4

$y=3x+4$

Arithmetic

699 * 533

$699∗533$

Matrix

\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { - 1 } & { 1 } & { 5 } \end{array} \right]

$[25 34 ][2−1 01 35 ]$

Simultaneous equation

\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.

${8x+2y=467x+3y=47 $

Differentiation

\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }

$dxd (x−5)(3x_{2}−2) $

Integration

\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x

$∫_{0}xe_{−x_{2}}dx$

Limits

\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}

$x→−3lim x_{2}+2x−3x_{2}−9 $

Back to top