Evaluate
-\frac{73}{9}\approx -8.111111111
Factor
-\frac{73}{9} = -8\frac{1}{9} = -8.11111111111111
Share
Copied to clipboard
-8-\frac{\frac{-8}{24}}{24}\left(-8\right)
Multiply -8 and \frac{1}{24} to get \frac{-8}{24}.
-8-\frac{-\frac{1}{3}}{24}\left(-8\right)
Reduce the fraction \frac{-8}{24} to lowest terms by extracting and canceling out 8.
-8-\frac{-1}{3\times 24}\left(-8\right)
Express \frac{-\frac{1}{3}}{24} as a single fraction.
-8-\frac{-1}{72}\left(-8\right)
Multiply 3 and 24 to get 72.
-8-\left(-\frac{1}{72}\left(-8\right)\right)
Fraction \frac{-1}{72} can be rewritten as -\frac{1}{72} by extracting the negative sign.
-8-\frac{-\left(-8\right)}{72}
Express -\frac{1}{72}\left(-8\right) as a single fraction.
-8-\frac{8}{72}
Multiply -1 and -8 to get 8.
-8-\frac{1}{9}
Reduce the fraction \frac{8}{72} to lowest terms by extracting and canceling out 8.
-\frac{72}{9}-\frac{1}{9}
Convert -8 to fraction -\frac{72}{9}.
\frac{-72-1}{9}
Since -\frac{72}{9} and \frac{1}{9} have the same denominator, subtract them by subtracting their numerators.
-\frac{73}{9}
Subtract 1 from -72 to get -73.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}