Solve for v
v = -\frac{13}{5} = -2\frac{3}{5} = -2.6
Share
Copied to clipboard
-8v-24+4v+5=6v+7
Use the distributive property to multiply -8 by v+3.
-4v-24+5=6v+7
Combine -8v and 4v to get -4v.
-4v-19=6v+7
Add -24 and 5 to get -19.
-4v-19-6v=7
Subtract 6v from both sides.
-10v-19=7
Combine -4v and -6v to get -10v.
-10v=7+19
Add 19 to both sides.
-10v=26
Add 7 and 19 to get 26.
v=\frac{26}{-10}
Divide both sides by -10.
v=-\frac{13}{5}
Reduce the fraction \frac{26}{-10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}