Solve for v
v = -\frac{28}{11} = -2\frac{6}{11} \approx -2.545454545
Share
Copied to clipboard
-8v-24+2v+5=5v+9
Use the distributive property to multiply -8 by v+3.
-6v-24+5=5v+9
Combine -8v and 2v to get -6v.
-6v-19=5v+9
Add -24 and 5 to get -19.
-6v-19-5v=9
Subtract 5v from both sides.
-11v-19=9
Combine -6v and -5v to get -11v.
-11v=9+19
Add 19 to both sides.
-11v=28
Add 9 and 19 to get 28.
v=\frac{28}{-11}
Divide both sides by -11.
v=-\frac{28}{11}
Fraction \frac{28}{-11} can be rewritten as -\frac{28}{11} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}