Solve for t
t=10-3i
t=10+3i
Share
Copied to clipboard
-8\left(t-10\right)^{2}=64+8
Subtracting 8 from itself leaves 0.
-8\left(t-10\right)^{2}=72
Add 64 to 8.
\frac{-8\left(t-10\right)^{2}}{-8}=\frac{72}{-8}
Divide both sides by -8.
\left(t-10\right)^{2}=\frac{72}{-8}
Dividing by -8 undoes the multiplication by -8.
\left(t-10\right)^{2}=-9
Divide 72 by -8.
t-10=3i t-10=-3i
Take the square root of both sides of the equation.
t-10-\left(-10\right)=3i-\left(-10\right) t-10-\left(-10\right)=-3i-\left(-10\right)
Add 10 to both sides of the equation.
t=3i-\left(-10\right) t=-3i-\left(-10\right)
Subtracting -10 from itself leaves 0.
t=10+3i
Subtract -10 from 3i.
t=10-3i
Subtract -10 from -3i.
t=10+3i t=10-3i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}