Solve for x
x=-3
Solve for x (complex solution)
x=\frac{\pi n_{1}i}{\ln(2)}-3
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
10\times 4^{x+1}=10\times 4^{-2}
Combine -8\times 4^{x+1} and 18\times 4^{x+1} to get 10\times 4^{x+1}.
10\times 4^{x+1}=10\times \frac{1}{16}
Calculate 4 to the power of -2 and get \frac{1}{16}.
10\times 4^{x+1}=\frac{5}{8}
Multiply 10 and \frac{1}{16} to get \frac{5}{8}.
4^{x+1}=\frac{\frac{5}{8}}{10}
Divide both sides by 10.
4^{x+1}=\frac{5}{8\times 10}
Express \frac{\frac{5}{8}}{10} as a single fraction.
4^{x+1}=\frac{5}{80}
Multiply 8 and 10 to get 80.
4^{x+1}=\frac{1}{16}
Reduce the fraction \frac{5}{80} to lowest terms by extracting and canceling out 5.
\log(4^{x+1})=\log(\frac{1}{16})
Take the logarithm of both sides of the equation.
\left(x+1\right)\log(4)=\log(\frac{1}{16})
The logarithm of a number raised to a power is the power times the logarithm of the number.
x+1=\frac{\log(\frac{1}{16})}{\log(4)}
Divide both sides by \log(4).
x+1=\log_{4}\left(\frac{1}{16}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=-2-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}