Evaluate
-\frac{419}{40}=-10.475
Factor
-\frac{419}{40} = -10\frac{19}{40} = -10.475
Share
Copied to clipboard
-\frac{64+1}{8}-\frac{3\times 20+1}{20}+\frac{7}{10}
Multiply 8 and 8 to get 64.
-\frac{65}{8}-\frac{3\times 20+1}{20}+\frac{7}{10}
Add 64 and 1 to get 65.
-\frac{65}{8}-\frac{60+1}{20}+\frac{7}{10}
Multiply 3 and 20 to get 60.
-\frac{65}{8}-\frac{61}{20}+\frac{7}{10}
Add 60 and 1 to get 61.
-\frac{325}{40}-\frac{122}{40}+\frac{7}{10}
Least common multiple of 8 and 20 is 40. Convert -\frac{65}{8} and \frac{61}{20} to fractions with denominator 40.
\frac{-325-122}{40}+\frac{7}{10}
Since -\frac{325}{40} and \frac{122}{40} have the same denominator, subtract them by subtracting their numerators.
-\frac{447}{40}+\frac{7}{10}
Subtract 122 from -325 to get -447.
-\frac{447}{40}+\frac{28}{40}
Least common multiple of 40 and 10 is 40. Convert -\frac{447}{40} and \frac{7}{10} to fractions with denominator 40.
\frac{-447+28}{40}
Since -\frac{447}{40} and \frac{28}{40} have the same denominator, add them by adding their numerators.
-\frac{419}{40}
Add -447 and 28 to get -419.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}