Evaluate
-\frac{163}{20}=-8.15
Factor
-\frac{163}{20} = -8\frac{3}{20} = -8.15
Share
Copied to clipboard
-\frac{480+1}{60}-\frac{\left(\frac{2}{5}\right)^{2}}{\frac{2\times 15+2}{15}}\times \frac{1\times 9+7}{9}
Multiply 8 and 60 to get 480.
-\frac{481}{60}-\frac{\left(\frac{2}{5}\right)^{2}}{\frac{2\times 15+2}{15}}\times \frac{1\times 9+7}{9}
Add 480 and 1 to get 481.
-\frac{481}{60}-\frac{\frac{4}{25}}{\frac{2\times 15+2}{15}}\times \frac{1\times 9+7}{9}
Calculate \frac{2}{5} to the power of 2 and get \frac{4}{25}.
-\frac{481}{60}-\frac{\frac{4}{25}}{\frac{30+2}{15}}\times \frac{1\times 9+7}{9}
Multiply 2 and 15 to get 30.
-\frac{481}{60}-\frac{\frac{4}{25}}{\frac{32}{15}}\times \frac{1\times 9+7}{9}
Add 30 and 2 to get 32.
-\frac{481}{60}-\frac{4}{25}\times \frac{15}{32}\times \frac{1\times 9+7}{9}
Divide \frac{4}{25} by \frac{32}{15} by multiplying \frac{4}{25} by the reciprocal of \frac{32}{15}.
-\frac{481}{60}-\frac{4\times 15}{25\times 32}\times \frac{1\times 9+7}{9}
Multiply \frac{4}{25} times \frac{15}{32} by multiplying numerator times numerator and denominator times denominator.
-\frac{481}{60}-\frac{60}{800}\times \frac{1\times 9+7}{9}
Do the multiplications in the fraction \frac{4\times 15}{25\times 32}.
-\frac{481}{60}-\frac{3}{40}\times \frac{1\times 9+7}{9}
Reduce the fraction \frac{60}{800} to lowest terms by extracting and canceling out 20.
-\frac{481}{60}-\frac{3}{40}\times \frac{9+7}{9}
Multiply 1 and 9 to get 9.
-\frac{481}{60}-\frac{3}{40}\times \frac{16}{9}
Add 9 and 7 to get 16.
-\frac{481}{60}-\frac{3\times 16}{40\times 9}
Multiply \frac{3}{40} times \frac{16}{9} by multiplying numerator times numerator and denominator times denominator.
-\frac{481}{60}-\frac{48}{360}
Do the multiplications in the fraction \frac{3\times 16}{40\times 9}.
-\frac{481}{60}-\frac{2}{15}
Reduce the fraction \frac{48}{360} to lowest terms by extracting and canceling out 24.
-\frac{481}{60}-\frac{8}{60}
Least common multiple of 60 and 15 is 60. Convert -\frac{481}{60} and \frac{2}{15} to fractions with denominator 60.
\frac{-481-8}{60}
Since -\frac{481}{60} and \frac{8}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{-489}{60}
Subtract 8 from -481 to get -489.
-\frac{163}{20}
Reduce the fraction \frac{-489}{60} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}