Solve for c
c=\frac{29d}{30}-\frac{41}{6}
Solve for d
d=\frac{30c+205}{29}
Share
Copied to clipboard
-32=4\left(-3\right)^{4}+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}-c+d+1\right)\left(-3\right)^{3}+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Multiply both sides of the equation by 4, the least common multiple of 2,4.
-32=4\times 81+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}-c+d+1\right)\left(-3\right)^{3}+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Calculate -3 to the power of 4 and get 81.
-32=324+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}-c+d+1\right)\left(-3\right)^{3}+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Multiply 4 and 81 to get 324.
-32=324+4\left(-\frac{1}{2}c-\frac{3d}{4}-\frac{9}{4}+d+1\right)\left(-3\right)^{3}+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Combine \frac{c}{2} and -c to get -\frac{1}{2}c.
-32=324+4\left(-\frac{1}{2}c-\frac{3d}{4}-\frac{5}{4}+d\right)\left(-3\right)^{3}+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Add -\frac{9}{4} and 1 to get -\frac{5}{4}.
-32=324+4\left(-\frac{1}{2}c+\frac{-3d-5}{4}+d\right)\left(-3\right)^{3}+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Since -\frac{3d}{4} and \frac{5}{4} have the same denominator, subtract them by subtracting their numerators.
-32=324+4\left(-\frac{1}{2}c+\frac{-3d-5}{4}+d\right)\left(-27\right)+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Calculate -3 to the power of 3 and get -27.
-32=324-108\left(-\frac{1}{2}c+\frac{-3d-5}{4}+d\right)+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Multiply 4 and -27 to get -108.
-32=324+54c-108\times \frac{-3d-5}{4}-108d+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Use the distributive property to multiply -108 by -\frac{1}{2}c+\frac{-3d-5}{4}+d.
-32=324+54c-27\left(-3d-5\right)-108d+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Cancel out 4, the greatest common factor in 108 and 4.
-32=324+54c+81d+135-108d+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Use the distributive property to multiply -27 by -3d-5.
-32=324+54c-27d+135+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Combine 81d and -108d to get -27d.
-32=459+54c-27d+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Add 324 and 135 to get 459.
-32=459+54c-27d+4\left(\frac{2c}{4}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply \frac{c}{2} times \frac{2}{2}.
-32=459+54c-27d+4\left(\frac{2c-3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Since \frac{2c}{4} and \frac{3d}{4} have the same denominator, subtract them by subtracting their numerators.
-32=459+54c-27d+4\times \frac{2c-3d-9}{4}\left(-3\right)^{2}+4c\left(-3\right)-4d
Since \frac{2c-3d}{4} and \frac{9}{4} have the same denominator, subtract them by subtracting their numerators.
-32=459+54c-27d+4\times \frac{2c-3d-9}{4}\times 9+4c\left(-3\right)-4d
Calculate -3 to the power of 2 and get 9.
-32=459+54c-27d+36\times \frac{2c-3d-9}{4}+4c\left(-3\right)-4d
Multiply 4 and 9 to get 36.
-32=459+54c-27d+9\left(2c-3d-9\right)+4c\left(-3\right)-4d
Cancel out 4, the greatest common factor in 36 and 4.
-32=459+54c-27d+18c-27d-81+4c\left(-3\right)-4d
Use the distributive property to multiply 9 by 2c-3d-9.
-32=459+72c-27d-27d-81+4c\left(-3\right)-4d
Combine 54c and 18c to get 72c.
-32=459+72c-54d-81+4c\left(-3\right)-4d
Combine -27d and -27d to get -54d.
-32=378+72c-54d+4c\left(-3\right)-4d
Subtract 81 from 459 to get 378.
-32=378+72c-54d-12c-4d
Multiply 4 and -3 to get -12.
-32=378+60c-54d-4d
Combine 72c and -12c to get 60c.
-32=378+60c-58d
Combine -54d and -4d to get -58d.
378+60c-58d=-32
Swap sides so that all variable terms are on the left hand side.
60c-58d=-32-378
Subtract 378 from both sides.
60c-58d=-410
Subtract 378 from -32 to get -410.
60c=-410+58d
Add 58d to both sides.
60c=58d-410
The equation is in standard form.
\frac{60c}{60}=\frac{58d-410}{60}
Divide both sides by 60.
c=\frac{58d-410}{60}
Dividing by 60 undoes the multiplication by 60.
c=\frac{29d}{30}-\frac{41}{6}
Divide -410+58d by 60.
-32=4\left(-3\right)^{4}+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}-c+d+1\right)\left(-3\right)^{3}+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Multiply both sides of the equation by 4, the least common multiple of 2,4.
-32=4\times 81+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}-c+d+1\right)\left(-3\right)^{3}+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Calculate -3 to the power of 4 and get 81.
-32=324+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}-c+d+1\right)\left(-3\right)^{3}+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Multiply 4 and 81 to get 324.
-32=324+4\left(-\frac{1}{2}c-\frac{3d}{4}-\frac{9}{4}+d+1\right)\left(-3\right)^{3}+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Combine \frac{c}{2} and -c to get -\frac{1}{2}c.
-32=324+4\left(-\frac{1}{2}c-\frac{3d}{4}-\frac{5}{4}+d\right)\left(-3\right)^{3}+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Add -\frac{9}{4} and 1 to get -\frac{5}{4}.
-32=324+4\left(-\frac{1}{2}c+\frac{-3d-5}{4}+d\right)\left(-3\right)^{3}+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Since -\frac{3d}{4} and \frac{5}{4} have the same denominator, subtract them by subtracting their numerators.
-32=324+4\left(-\frac{1}{2}c+\frac{-3d-5}{4}+d\right)\left(-27\right)+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Calculate -3 to the power of 3 and get -27.
-32=324-108\left(-\frac{1}{2}c+\frac{-3d-5}{4}+d\right)+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Multiply 4 and -27 to get -108.
-32=324+54c-108\times \frac{-3d-5}{4}-108d+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Use the distributive property to multiply -108 by -\frac{1}{2}c+\frac{-3d-5}{4}+d.
-32=324+54c-27\left(-3d-5\right)-108d+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Cancel out 4, the greatest common factor in 108 and 4.
-32=324+54c+81d+135-108d+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Use the distributive property to multiply -27 by -3d-5.
-32=324+54c-27d+135+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Combine 81d and -108d to get -27d.
-32=459+54c-27d+4\left(\frac{c}{2}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Add 324 and 135 to get 459.
-32=459+54c-27d+4\left(\frac{2c}{4}-\frac{3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply \frac{c}{2} times \frac{2}{2}.
-32=459+54c-27d+4\left(\frac{2c-3d}{4}-\frac{9}{4}\right)\left(-3\right)^{2}+4c\left(-3\right)-4d
Since \frac{2c}{4} and \frac{3d}{4} have the same denominator, subtract them by subtracting their numerators.
-32=459+54c-27d+4\times \frac{2c-3d-9}{4}\left(-3\right)^{2}+4c\left(-3\right)-4d
Since \frac{2c-3d}{4} and \frac{9}{4} have the same denominator, subtract them by subtracting their numerators.
-32=459+54c-27d+4\times \frac{2c-3d-9}{4}\times 9+4c\left(-3\right)-4d
Calculate -3 to the power of 2 and get 9.
-32=459+54c-27d+36\times \frac{2c-3d-9}{4}+4c\left(-3\right)-4d
Multiply 4 and 9 to get 36.
-32=459+54c-27d+9\left(2c-3d-9\right)+4c\left(-3\right)-4d
Cancel out 4, the greatest common factor in 36 and 4.
-32=459+54c-27d+18c-27d-81+4c\left(-3\right)-4d
Use the distributive property to multiply 9 by 2c-3d-9.
-32=459+72c-27d-27d-81+4c\left(-3\right)-4d
Combine 54c and 18c to get 72c.
-32=459+72c-54d-81+4c\left(-3\right)-4d
Combine -27d and -27d to get -54d.
-32=378+72c-54d+4c\left(-3\right)-4d
Subtract 81 from 459 to get 378.
-32=378+72c-54d-12c-4d
Multiply 4 and -3 to get -12.
-32=378+60c-54d-4d
Combine 72c and -12c to get 60c.
-32=378+60c-58d
Combine -54d and -4d to get -58d.
378+60c-58d=-32
Swap sides so that all variable terms are on the left hand side.
60c-58d=-32-378
Subtract 378 from both sides.
60c-58d=-410
Subtract 378 from -32 to get -410.
-58d=-410-60c
Subtract 60c from both sides.
-58d=-60c-410
The equation is in standard form.
\frac{-58d}{-58}=\frac{-60c-410}{-58}
Divide both sides by -58.
d=\frac{-60c-410}{-58}
Dividing by -58 undoes the multiplication by -58.
d=\frac{30c+205}{29}
Divide -410-60c by -58.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}