Solve for n
n=\frac{\sqrt{2585}-91}{2}\approx -20.078552362
n=\frac{-\sqrt{2585}-91}{2}\approx -70.921447638
Share
Copied to clipboard
-712\times 2=n\left(113+n-1-21\right)
Multiply both sides by 2.
-1424=n\left(113+n-1-21\right)
Multiply -712 and 2 to get -1424.
-1424=n\left(112+n-21\right)
Subtract 1 from 113 to get 112.
-1424=n\left(91+n\right)
Subtract 21 from 112 to get 91.
-1424=91n+n^{2}
Use the distributive property to multiply n by 91+n.
91n+n^{2}=-1424
Swap sides so that all variable terms are on the left hand side.
91n+n^{2}+1424=0
Add 1424 to both sides.
n^{2}+91n+1424=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-91±\sqrt{91^{2}-4\times 1424}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 91 for b, and 1424 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-91±\sqrt{8281-4\times 1424}}{2}
Square 91.
n=\frac{-91±\sqrt{8281-5696}}{2}
Multiply -4 times 1424.
n=\frac{-91±\sqrt{2585}}{2}
Add 8281 to -5696.
n=\frac{\sqrt{2585}-91}{2}
Now solve the equation n=\frac{-91±\sqrt{2585}}{2} when ± is plus. Add -91 to \sqrt{2585}.
n=\frac{-\sqrt{2585}-91}{2}
Now solve the equation n=\frac{-91±\sqrt{2585}}{2} when ± is minus. Subtract \sqrt{2585} from -91.
n=\frac{\sqrt{2585}-91}{2} n=\frac{-\sqrt{2585}-91}{2}
The equation is now solved.
-712\times 2=n\left(113+n-1-21\right)
Multiply both sides by 2.
-1424=n\left(113+n-1-21\right)
Multiply -712 and 2 to get -1424.
-1424=n\left(112+n-21\right)
Subtract 1 from 113 to get 112.
-1424=n\left(91+n\right)
Subtract 21 from 112 to get 91.
-1424=91n+n^{2}
Use the distributive property to multiply n by 91+n.
91n+n^{2}=-1424
Swap sides so that all variable terms are on the left hand side.
n^{2}+91n=-1424
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}+91n+\left(\frac{91}{2}\right)^{2}=-1424+\left(\frac{91}{2}\right)^{2}
Divide 91, the coefficient of the x term, by 2 to get \frac{91}{2}. Then add the square of \frac{91}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+91n+\frac{8281}{4}=-1424+\frac{8281}{4}
Square \frac{91}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+91n+\frac{8281}{4}=\frac{2585}{4}
Add -1424 to \frac{8281}{4}.
\left(n+\frac{91}{2}\right)^{2}=\frac{2585}{4}
Factor n^{2}+91n+\frac{8281}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{91}{2}\right)^{2}}=\sqrt{\frac{2585}{4}}
Take the square root of both sides of the equation.
n+\frac{91}{2}=\frac{\sqrt{2585}}{2} n+\frac{91}{2}=-\frac{\sqrt{2585}}{2}
Simplify.
n=\frac{\sqrt{2585}-91}{2} n=\frac{-\sqrt{2585}-91}{2}
Subtract \frac{91}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}