Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-7.5x^{2}+\frac{775}{18}x=\frac{1795}{36}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-7.5x^{2}+\frac{775}{18}x-\frac{1795}{36}=\frac{1795}{36}-\frac{1795}{36}
Subtract \frac{1795}{36} from both sides of the equation.
-7.5x^{2}+\frac{775}{18}x-\frac{1795}{36}=0
Subtracting \frac{1795}{36} from itself leaves 0.
x=\frac{-\frac{775}{18}±\sqrt{\left(\frac{775}{18}\right)^{2}-4\left(-7.5\right)\left(-\frac{1795}{36}\right)}}{2\left(-7.5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7.5 for a, \frac{775}{18} for b, and -\frac{1795}{36} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{775}{18}±\sqrt{\frac{600625}{324}-4\left(-7.5\right)\left(-\frac{1795}{36}\right)}}{2\left(-7.5\right)}
Square \frac{775}{18} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{775}{18}±\sqrt{\frac{600625}{324}+30\left(-\frac{1795}{36}\right)}}{2\left(-7.5\right)}
Multiply -4 times -7.5.
x=\frac{-\frac{775}{18}±\sqrt{\frac{600625}{324}-\frac{8975}{6}}}{2\left(-7.5\right)}
Multiply 30 times -\frac{1795}{36}.
x=\frac{-\frac{775}{18}±\sqrt{\frac{115975}{324}}}{2\left(-7.5\right)}
Add \frac{600625}{324} to -\frac{8975}{6} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{775}{18}±\frac{5\sqrt{4639}}{18}}{2\left(-7.5\right)}
Take the square root of \frac{115975}{324}.
x=\frac{-\frac{775}{18}±\frac{5\sqrt{4639}}{18}}{-15}
Multiply 2 times -7.5.
x=\frac{5\sqrt{4639}-775}{-15\times 18}
Now solve the equation x=\frac{-\frac{775}{18}±\frac{5\sqrt{4639}}{18}}{-15} when ± is plus. Add -\frac{775}{18} to \frac{5\sqrt{4639}}{18}.
x=\frac{155-\sqrt{4639}}{54}
Divide \frac{-775+5\sqrt{4639}}{18} by -15.
x=\frac{-5\sqrt{4639}-775}{-15\times 18}
Now solve the equation x=\frac{-\frac{775}{18}±\frac{5\sqrt{4639}}{18}}{-15} when ± is minus. Subtract \frac{5\sqrt{4639}}{18} from -\frac{775}{18}.
x=\frac{\sqrt{4639}+155}{54}
Divide \frac{-775-5\sqrt{4639}}{18} by -15.
x=\frac{155-\sqrt{4639}}{54} x=\frac{\sqrt{4639}+155}{54}
The equation is now solved.
-7.5x^{2}+\frac{775}{18}x=\frac{1795}{36}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-7.5x^{2}+\frac{775}{18}x}{-7.5}=\frac{\frac{1795}{36}}{-7.5}
Divide both sides of the equation by -7.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{775}{18}}{-7.5}x=\frac{\frac{1795}{36}}{-7.5}
Dividing by -7.5 undoes the multiplication by -7.5.
x^{2}-\frac{155}{27}x=\frac{\frac{1795}{36}}{-7.5}
Divide \frac{775}{18} by -7.5 by multiplying \frac{775}{18} by the reciprocal of -7.5.
x^{2}-\frac{155}{27}x=-\frac{359}{54}
Divide \frac{1795}{36} by -7.5 by multiplying \frac{1795}{36} by the reciprocal of -7.5.
x^{2}-\frac{155}{27}x+\left(-\frac{155}{54}\right)^{2}=-\frac{359}{54}+\left(-\frac{155}{54}\right)^{2}
Divide -\frac{155}{27}, the coefficient of the x term, by 2 to get -\frac{155}{54}. Then add the square of -\frac{155}{54} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{155}{27}x+\frac{24025}{2916}=-\frac{359}{54}+\frac{24025}{2916}
Square -\frac{155}{54} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{155}{27}x+\frac{24025}{2916}=\frac{4639}{2916}
Add -\frac{359}{54} to \frac{24025}{2916} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{155}{54}\right)^{2}=\frac{4639}{2916}
Factor x^{2}-\frac{155}{27}x+\frac{24025}{2916}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{155}{54}\right)^{2}}=\sqrt{\frac{4639}{2916}}
Take the square root of both sides of the equation.
x-\frac{155}{54}=\frac{\sqrt{4639}}{54} x-\frac{155}{54}=-\frac{\sqrt{4639}}{54}
Simplify.
x=\frac{\sqrt{4639}+155}{54} x=\frac{155-\sqrt{4639}}{54}
Add \frac{155}{54} to both sides of the equation.