Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(-7x-1\right)
Factor out x.
-7x^{2}-x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1}}{2\left(-7\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±1}{2\left(-7\right)}
Take the square root of 1.
x=\frac{1±1}{2\left(-7\right)}
The opposite of -1 is 1.
x=\frac{1±1}{-14}
Multiply 2 times -7.
x=\frac{2}{-14}
Now solve the equation x=\frac{1±1}{-14} when ± is plus. Add 1 to 1.
x=-\frac{1}{7}
Reduce the fraction \frac{2}{-14} to lowest terms by extracting and canceling out 2.
x=\frac{0}{-14}
Now solve the equation x=\frac{1±1}{-14} when ± is minus. Subtract 1 from 1.
x=0
Divide 0 by -14.
-7x^{2}-x=-7\left(x-\left(-\frac{1}{7}\right)\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{7} for x_{1} and 0 for x_{2}.
-7x^{2}-x=-7\left(x+\frac{1}{7}\right)x
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-7x^{2}-x=-7\times \frac{-7x-1}{-7}x
Add \frac{1}{7} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-7x^{2}-x=\left(-7x-1\right)x
Cancel out 7, the greatest common factor in -7 and -7.