Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-7x^{2}=-343
Subtract 343 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-343}{-7}
Divide both sides by -7.
x^{2}=49
Divide -343 by -7 to get 49.
x=7 x=-7
Take the square root of both sides of the equation.
-7x^{2}+343=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-7\right)\times 343}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 0 for b, and 343 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-7\right)\times 343}}{2\left(-7\right)}
Square 0.
x=\frac{0±\sqrt{28\times 343}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{0±\sqrt{9604}}{2\left(-7\right)}
Multiply 28 times 343.
x=\frac{0±98}{2\left(-7\right)}
Take the square root of 9604.
x=\frac{0±98}{-14}
Multiply 2 times -7.
x=-7
Now solve the equation x=\frac{0±98}{-14} when ± is plus. Divide 98 by -14.
x=7
Now solve the equation x=\frac{0±98}{-14} when ± is minus. Divide -98 by -14.
x=-7 x=7
The equation is now solved.