Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-7x^{2}+12x=10
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-7x^{2}+12x-10=10-10
Subtract 10 from both sides of the equation.
-7x^{2}+12x-10=0
Subtracting 10 from itself leaves 0.
x=\frac{-12±\sqrt{12^{2}-4\left(-7\right)\left(-10\right)}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 12 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-7\right)\left(-10\right)}}{2\left(-7\right)}
Square 12.
x=\frac{-12±\sqrt{144+28\left(-10\right)}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-12±\sqrt{144-280}}{2\left(-7\right)}
Multiply 28 times -10.
x=\frac{-12±\sqrt{-136}}{2\left(-7\right)}
Add 144 to -280.
x=\frac{-12±2\sqrt{34}i}{2\left(-7\right)}
Take the square root of -136.
x=\frac{-12±2\sqrt{34}i}{-14}
Multiply 2 times -7.
x=\frac{-12+2\sqrt{34}i}{-14}
Now solve the equation x=\frac{-12±2\sqrt{34}i}{-14} when ± is plus. Add -12 to 2i\sqrt{34}.
x=\frac{-\sqrt{34}i+6}{7}
Divide -12+2i\sqrt{34} by -14.
x=\frac{-2\sqrt{34}i-12}{-14}
Now solve the equation x=\frac{-12±2\sqrt{34}i}{-14} when ± is minus. Subtract 2i\sqrt{34} from -12.
x=\frac{6+\sqrt{34}i}{7}
Divide -12-2i\sqrt{34} by -14.
x=\frac{-\sqrt{34}i+6}{7} x=\frac{6+\sqrt{34}i}{7}
The equation is now solved.
-7x^{2}+12x=10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-7x^{2}+12x}{-7}=\frac{10}{-7}
Divide both sides by -7.
x^{2}+\frac{12}{-7}x=\frac{10}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}-\frac{12}{7}x=\frac{10}{-7}
Divide 12 by -7.
x^{2}-\frac{12}{7}x=-\frac{10}{7}
Divide 10 by -7.
x^{2}-\frac{12}{7}x+\left(-\frac{6}{7}\right)^{2}=-\frac{10}{7}+\left(-\frac{6}{7}\right)^{2}
Divide -\frac{12}{7}, the coefficient of the x term, by 2 to get -\frac{6}{7}. Then add the square of -\frac{6}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{12}{7}x+\frac{36}{49}=-\frac{10}{7}+\frac{36}{49}
Square -\frac{6}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{12}{7}x+\frac{36}{49}=-\frac{34}{49}
Add -\frac{10}{7} to \frac{36}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{6}{7}\right)^{2}=-\frac{34}{49}
Factor x^{2}-\frac{12}{7}x+\frac{36}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{6}{7}\right)^{2}}=\sqrt{-\frac{34}{49}}
Take the square root of both sides of the equation.
x-\frac{6}{7}=\frac{\sqrt{34}i}{7} x-\frac{6}{7}=-\frac{\sqrt{34}i}{7}
Simplify.
x=\frac{6+\sqrt{34}i}{7} x=\frac{-\sqrt{34}i+6}{7}
Add \frac{6}{7} to both sides of the equation.