Solve for x
x=\frac{\sqrt{61}-7}{6}\approx 0.135041613
x=\frac{-\sqrt{61}-7}{6}\approx -2.468374946
Graph
Share
Copied to clipboard
-7x-3x^{2}=-1
Subtract 3x^{2} from both sides.
-7x-3x^{2}+1=0
Add 1 to both sides.
-3x^{2}-7x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-3\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -7 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-3\right)}}{2\left(-3\right)}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49+12}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-7\right)±\sqrt{61}}{2\left(-3\right)}
Add 49 to 12.
x=\frac{7±\sqrt{61}}{2\left(-3\right)}
The opposite of -7 is 7.
x=\frac{7±\sqrt{61}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{61}+7}{-6}
Now solve the equation x=\frac{7±\sqrt{61}}{-6} when ± is plus. Add 7 to \sqrt{61}.
x=\frac{-\sqrt{61}-7}{6}
Divide 7+\sqrt{61} by -6.
x=\frac{7-\sqrt{61}}{-6}
Now solve the equation x=\frac{7±\sqrt{61}}{-6} when ± is minus. Subtract \sqrt{61} from 7.
x=\frac{\sqrt{61}-7}{6}
Divide 7-\sqrt{61} by -6.
x=\frac{-\sqrt{61}-7}{6} x=\frac{\sqrt{61}-7}{6}
The equation is now solved.
-7x-3x^{2}=-1
Subtract 3x^{2} from both sides.
-3x^{2}-7x=-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}-7x}{-3}=-\frac{1}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{7}{-3}\right)x=-\frac{1}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{7}{3}x=-\frac{1}{-3}
Divide -7 by -3.
x^{2}+\frac{7}{3}x=\frac{1}{3}
Divide -1 by -3.
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=\frac{1}{3}+\left(\frac{7}{6}\right)^{2}
Divide \frac{7}{3}, the coefficient of the x term, by 2 to get \frac{7}{6}. Then add the square of \frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{1}{3}+\frac{49}{36}
Square \frac{7}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{61}{36}
Add \frac{1}{3} to \frac{49}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{6}\right)^{2}=\frac{61}{36}
Factor x^{2}+\frac{7}{3}x+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{\frac{61}{36}}
Take the square root of both sides of the equation.
x+\frac{7}{6}=\frac{\sqrt{61}}{6} x+\frac{7}{6}=-\frac{\sqrt{61}}{6}
Simplify.
x=\frac{\sqrt{61}-7}{6} x=\frac{-\sqrt{61}-7}{6}
Subtract \frac{7}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}