Factor
-\left(v+3\right)\left(7v+4\right)
Evaluate
-\left(v+3\right)\left(7v+4\right)
Share
Copied to clipboard
a+b=-25 ab=-7\left(-12\right)=84
Factor the expression by grouping. First, the expression needs to be rewritten as -7v^{2}+av+bv-12. To find a and b, set up a system to be solved.
-1,-84 -2,-42 -3,-28 -4,-21 -6,-14 -7,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 84.
-1-84=-85 -2-42=-44 -3-28=-31 -4-21=-25 -6-14=-20 -7-12=-19
Calculate the sum for each pair.
a=-4 b=-21
The solution is the pair that gives sum -25.
\left(-7v^{2}-4v\right)+\left(-21v-12\right)
Rewrite -7v^{2}-25v-12 as \left(-7v^{2}-4v\right)+\left(-21v-12\right).
-v\left(7v+4\right)-3\left(7v+4\right)
Factor out -v in the first and -3 in the second group.
\left(7v+4\right)\left(-v-3\right)
Factor out common term 7v+4 by using distributive property.
-7v^{2}-25v-12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
v=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\left(-7\right)\left(-12\right)}}{2\left(-7\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-\left(-25\right)±\sqrt{625-4\left(-7\right)\left(-12\right)}}{2\left(-7\right)}
Square -25.
v=\frac{-\left(-25\right)±\sqrt{625+28\left(-12\right)}}{2\left(-7\right)}
Multiply -4 times -7.
v=\frac{-\left(-25\right)±\sqrt{625-336}}{2\left(-7\right)}
Multiply 28 times -12.
v=\frac{-\left(-25\right)±\sqrt{289}}{2\left(-7\right)}
Add 625 to -336.
v=\frac{-\left(-25\right)±17}{2\left(-7\right)}
Take the square root of 289.
v=\frac{25±17}{2\left(-7\right)}
The opposite of -25 is 25.
v=\frac{25±17}{-14}
Multiply 2 times -7.
v=\frac{42}{-14}
Now solve the equation v=\frac{25±17}{-14} when ± is plus. Add 25 to 17.
v=-3
Divide 42 by -14.
v=\frac{8}{-14}
Now solve the equation v=\frac{25±17}{-14} when ± is minus. Subtract 17 from 25.
v=-\frac{4}{7}
Reduce the fraction \frac{8}{-14} to lowest terms by extracting and canceling out 2.
-7v^{2}-25v-12=-7\left(v-\left(-3\right)\right)\left(v-\left(-\frac{4}{7}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -3 for x_{1} and -\frac{4}{7} for x_{2}.
-7v^{2}-25v-12=-7\left(v+3\right)\left(v+\frac{4}{7}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-7v^{2}-25v-12=-7\left(v+3\right)\times \frac{-7v-4}{-7}
Add \frac{4}{7} to v by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-7v^{2}-25v-12=\left(v+3\right)\left(-7v-4\right)
Cancel out 7, the greatest common factor in -7 and 7.
x ^ 2 +\frac{25}{7}x +\frac{12}{7} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{25}{7} rs = \frac{12}{7}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{25}{14} - u s = -\frac{25}{14} + u
Two numbers r and s sum up to -\frac{25}{7} exactly when the average of the two numbers is \frac{1}{2}*-\frac{25}{7} = -\frac{25}{14}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{25}{14} - u) (-\frac{25}{14} + u) = \frac{12}{7}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{12}{7}
\frac{625}{196} - u^2 = \frac{12}{7}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{12}{7}-\frac{625}{196} = -\frac{289}{196}
Simplify the expression by subtracting \frac{625}{196} on both sides
u^2 = \frac{289}{196} u = \pm\sqrt{\frac{289}{196}} = \pm \frac{17}{14}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{25}{14} - \frac{17}{14} = -3 s = -\frac{25}{14} + \frac{17}{14} = -0.571
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}