Solve for u
u=\frac{10}{69}\approx 0.144927536
Share
Copied to clipboard
-7u+\frac{1}{3}+\frac{5}{4}u=-\frac{1}{2}
Add \frac{5}{4}u to both sides.
-\frac{23}{4}u+\frac{1}{3}=-\frac{1}{2}
Combine -7u and \frac{5}{4}u to get -\frac{23}{4}u.
-\frac{23}{4}u=-\frac{1}{2}-\frac{1}{3}
Subtract \frac{1}{3} from both sides.
-\frac{23}{4}u=-\frac{3}{6}-\frac{2}{6}
Least common multiple of 2 and 3 is 6. Convert -\frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
-\frac{23}{4}u=\frac{-3-2}{6}
Since -\frac{3}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{23}{4}u=-\frac{5}{6}
Subtract 2 from -3 to get -5.
u=-\frac{5}{6}\left(-\frac{4}{23}\right)
Multiply both sides by -\frac{4}{23}, the reciprocal of -\frac{23}{4}.
u=\frac{-5\left(-4\right)}{6\times 23}
Multiply -\frac{5}{6} times -\frac{4}{23} by multiplying numerator times numerator and denominator times denominator.
u=\frac{20}{138}
Do the multiplications in the fraction \frac{-5\left(-4\right)}{6\times 23}.
u=\frac{10}{69}
Reduce the fraction \frac{20}{138} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}