Solve for b
b=38x+72
Solve for x
x=\frac{b-72}{38}
Graph
Share
Copied to clipboard
5\left(-\frac{7\times 5+3}{5}\right)x\times 5+5b=360
Multiply both sides of the equation by 5.
5\left(-\frac{35+3}{5}\right)x\times 5+5b=360
Multiply 7 and 5 to get 35.
5\left(-\frac{38}{5}\right)x\times 5+5b=360
Add 35 and 3 to get 38.
-38x\times 5+5b=360
Multiply 5 and -\frac{38}{5} to get -38.
-190x+5b=360
Multiply -38 and 5 to get -190.
5b=360+190x
Add 190x to both sides.
5b=190x+360
The equation is in standard form.
\frac{5b}{5}=\frac{190x+360}{5}
Divide both sides by 5.
b=\frac{190x+360}{5}
Dividing by 5 undoes the multiplication by 5.
b=38x+72
Divide 360+190x by 5.
5\left(-\frac{7\times 5+3}{5}\right)x\times 5+5b=360
Multiply both sides of the equation by 5.
5\left(-\frac{35+3}{5}\right)x\times 5+5b=360
Multiply 7 and 5 to get 35.
5\left(-\frac{38}{5}\right)x\times 5+5b=360
Add 35 and 3 to get 38.
-38x\times 5+5b=360
Multiply 5 and -\frac{38}{5} to get -38.
-190x+5b=360
Multiply -38 and 5 to get -190.
-190x=360-5b
Subtract 5b from both sides.
\frac{-190x}{-190}=\frac{360-5b}{-190}
Divide both sides by -190.
x=\frac{360-5b}{-190}
Dividing by -190 undoes the multiplication by -190.
x=\frac{b}{38}-\frac{36}{19}
Divide 360-5b by -190.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}