Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-7x+7-\frac{2}{3}<3\left(x+2\right)+\frac{1}{3}
Use the distributive property to multiply -7 by x-1.
-7x+\frac{21}{3}-\frac{2}{3}<3\left(x+2\right)+\frac{1}{3}
Convert 7 to fraction \frac{21}{3}.
-7x+\frac{21-2}{3}<3\left(x+2\right)+\frac{1}{3}
Since \frac{21}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
-7x+\frac{19}{3}<3\left(x+2\right)+\frac{1}{3}
Subtract 2 from 21 to get 19.
-7x+\frac{19}{3}<3x+6+\frac{1}{3}
Use the distributive property to multiply 3 by x+2.
-7x+\frac{19}{3}<3x+\frac{18}{3}+\frac{1}{3}
Convert 6 to fraction \frac{18}{3}.
-7x+\frac{19}{3}<3x+\frac{18+1}{3}
Since \frac{18}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
-7x+\frac{19}{3}<3x+\frac{19}{3}
Add 18 and 1 to get 19.
-7x+\frac{19}{3}-3x<\frac{19}{3}
Subtract 3x from both sides.
-10x+\frac{19}{3}<\frac{19}{3}
Combine -7x and -3x to get -10x.
-10x<\frac{19}{3}-\frac{19}{3}
Subtract \frac{19}{3} from both sides.
-10x<0
Subtract \frac{19}{3} from \frac{19}{3} to get 0.
x>0
Product of two numbers is <0 if one is >0 and the other is <0. Since -10<0, x must be >0.