Solve for x
x>0
Graph
Share
Copied to clipboard
-7x+7-\frac{2}{3}<3\left(x+2\right)+\frac{1}{3}
Use the distributive property to multiply -7 by x-1.
-7x+\frac{21}{3}-\frac{2}{3}<3\left(x+2\right)+\frac{1}{3}
Convert 7 to fraction \frac{21}{3}.
-7x+\frac{21-2}{3}<3\left(x+2\right)+\frac{1}{3}
Since \frac{21}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
-7x+\frac{19}{3}<3\left(x+2\right)+\frac{1}{3}
Subtract 2 from 21 to get 19.
-7x+\frac{19}{3}<3x+6+\frac{1}{3}
Use the distributive property to multiply 3 by x+2.
-7x+\frac{19}{3}<3x+\frac{18}{3}+\frac{1}{3}
Convert 6 to fraction \frac{18}{3}.
-7x+\frac{19}{3}<3x+\frac{18+1}{3}
Since \frac{18}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
-7x+\frac{19}{3}<3x+\frac{19}{3}
Add 18 and 1 to get 19.
-7x+\frac{19}{3}-3x<\frac{19}{3}
Subtract 3x from both sides.
-10x+\frac{19}{3}<\frac{19}{3}
Combine -7x and -3x to get -10x.
-10x<\frac{19}{3}-\frac{19}{3}
Subtract \frac{19}{3} from both sides.
-10x<0
Subtract \frac{19}{3} from \frac{19}{3} to get 0.
x>0
Product of two numbers is <0 if one is >0 and the other is <0. Since -10<0, x must be >0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}