Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

-68\times \frac{11}{16}\left(-7\right)a
Divide -68 by \frac{16}{11} by multiplying -68 by the reciprocal of \frac{16}{11}.
\frac{-68\times 11}{16}\left(-7\right)a
Express -68\times \frac{11}{16} as a single fraction.
\frac{-748}{16}\left(-7\right)a
Multiply -68 and 11 to get -748.
-\frac{187}{4}\left(-7\right)a
Reduce the fraction \frac{-748}{16} to lowest terms by extracting and canceling out 4.
\frac{-187\left(-7\right)}{4}a
Express -\frac{187}{4}\left(-7\right) as a single fraction.
\frac{1309}{4}a
Multiply -187 and -7 to get 1309.
\frac{\mathrm{d}}{\mathrm{d}a}(-68\times \frac{11}{16}\left(-7\right)a)
Divide -68 by \frac{16}{11} by multiplying -68 by the reciprocal of \frac{16}{11}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-68\times 11}{16}\left(-7\right)a)
Express -68\times \frac{11}{16} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-748}{16}\left(-7\right)a)
Multiply -68 and 11 to get -748.
\frac{\mathrm{d}}{\mathrm{d}a}(-\frac{187}{4}\left(-7\right)a)
Reduce the fraction \frac{-748}{16} to lowest terms by extracting and canceling out 4.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-187\left(-7\right)}{4}a)
Express -\frac{187}{4}\left(-7\right) as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1309}{4}a)
Multiply -187 and -7 to get 1309.
\frac{1309}{4}a^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{1309}{4}a^{0}
Subtract 1 from 1.
\frac{1309}{4}\times 1
For any term t except 0, t^{0}=1.
\frac{1309}{4}
For any term t, t\times 1=t and 1t=t.