Evaluate
-\frac{263}{4}=-65.75
Factor
-\frac{263}{4} = -65\frac{3}{4} = -65.75
Share
Copied to clipboard
-63-\left(-\frac{5}{4}\right)-1+\frac{9}{-3}
Fraction \frac{5}{-4} can be rewritten as -\frac{5}{4} by extracting the negative sign.
-63+\frac{5}{4}-1+\frac{9}{-3}
The opposite of -\frac{5}{4} is \frac{5}{4}.
-\frac{252}{4}+\frac{5}{4}-1+\frac{9}{-3}
Convert -63 to fraction -\frac{252}{4}.
\frac{-252+5}{4}-1+\frac{9}{-3}
Since -\frac{252}{4} and \frac{5}{4} have the same denominator, add them by adding their numerators.
-\frac{247}{4}-1+\frac{9}{-3}
Add -252 and 5 to get -247.
-\frac{247}{4}-\frac{4}{4}+\frac{9}{-3}
Convert 1 to fraction \frac{4}{4}.
\frac{-247-4}{4}+\frac{9}{-3}
Since -\frac{247}{4} and \frac{4}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{251}{4}+\frac{9}{-3}
Subtract 4 from -247 to get -251.
-\frac{251}{4}-3
Divide 9 by -3 to get -3.
-\frac{251}{4}-\frac{12}{4}
Convert 3 to fraction \frac{12}{4}.
\frac{-251-12}{4}
Since -\frac{251}{4} and \frac{12}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{263}{4}
Subtract 12 from -251 to get -263.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}