Solve for x
x = \frac{\sqrt{409} + 5}{24} \approx 1.050989517
x=\frac{5-\sqrt{409}}{24}\approx -0.634322851
Graph
Share
Copied to clipboard
-60x^{2}+25x+40=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-25±\sqrt{25^{2}-4\left(-60\right)\times 40}}{2\left(-60\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -60 for a, 25 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\left(-60\right)\times 40}}{2\left(-60\right)}
Square 25.
x=\frac{-25±\sqrt{625+240\times 40}}{2\left(-60\right)}
Multiply -4 times -60.
x=\frac{-25±\sqrt{625+9600}}{2\left(-60\right)}
Multiply 240 times 40.
x=\frac{-25±\sqrt{10225}}{2\left(-60\right)}
Add 625 to 9600.
x=\frac{-25±5\sqrt{409}}{2\left(-60\right)}
Take the square root of 10225.
x=\frac{-25±5\sqrt{409}}{-120}
Multiply 2 times -60.
x=\frac{5\sqrt{409}-25}{-120}
Now solve the equation x=\frac{-25±5\sqrt{409}}{-120} when ± is plus. Add -25 to 5\sqrt{409}.
x=\frac{5-\sqrt{409}}{24}
Divide -25+5\sqrt{409} by -120.
x=\frac{-5\sqrt{409}-25}{-120}
Now solve the equation x=\frac{-25±5\sqrt{409}}{-120} when ± is minus. Subtract 5\sqrt{409} from -25.
x=\frac{\sqrt{409}+5}{24}
Divide -25-5\sqrt{409} by -120.
x=\frac{5-\sqrt{409}}{24} x=\frac{\sqrt{409}+5}{24}
The equation is now solved.
-60x^{2}+25x+40=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-60x^{2}+25x+40-40=-40
Subtract 40 from both sides of the equation.
-60x^{2}+25x=-40
Subtracting 40 from itself leaves 0.
\frac{-60x^{2}+25x}{-60}=-\frac{40}{-60}
Divide both sides by -60.
x^{2}+\frac{25}{-60}x=-\frac{40}{-60}
Dividing by -60 undoes the multiplication by -60.
x^{2}-\frac{5}{12}x=-\frac{40}{-60}
Reduce the fraction \frac{25}{-60} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{5}{12}x=\frac{2}{3}
Reduce the fraction \frac{-40}{-60} to lowest terms by extracting and canceling out 20.
x^{2}-\frac{5}{12}x+\left(-\frac{5}{24}\right)^{2}=\frac{2}{3}+\left(-\frac{5}{24}\right)^{2}
Divide -\frac{5}{12}, the coefficient of the x term, by 2 to get -\frac{5}{24}. Then add the square of -\frac{5}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{12}x+\frac{25}{576}=\frac{2}{3}+\frac{25}{576}
Square -\frac{5}{24} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{12}x+\frac{25}{576}=\frac{409}{576}
Add \frac{2}{3} to \frac{25}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{24}\right)^{2}=\frac{409}{576}
Factor x^{2}-\frac{5}{12}x+\frac{25}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{24}\right)^{2}}=\sqrt{\frac{409}{576}}
Take the square root of both sides of the equation.
x-\frac{5}{24}=\frac{\sqrt{409}}{24} x-\frac{5}{24}=-\frac{\sqrt{409}}{24}
Simplify.
x=\frac{\sqrt{409}+5}{24} x=\frac{5-\sqrt{409}}{24}
Add \frac{5}{24} to both sides of the equation.
x ^ 2 -\frac{5}{12}x -\frac{2}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{5}{12} rs = -\frac{2}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{5}{24} - u s = \frac{5}{24} + u
Two numbers r and s sum up to \frac{5}{12} exactly when the average of the two numbers is \frac{1}{2}*\frac{5}{12} = \frac{5}{24}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{5}{24} - u) (\frac{5}{24} + u) = -\frac{2}{3}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{2}{3}
\frac{25}{576} - u^2 = -\frac{2}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{2}{3}-\frac{25}{576} = -\frac{409}{576}
Simplify the expression by subtracting \frac{25}{576} on both sides
u^2 = \frac{409}{576} u = \pm\sqrt{\frac{409}{576}} = \pm \frac{\sqrt{409}}{24}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{5}{24} - \frac{\sqrt{409}}{24} = -0.634 s = \frac{5}{24} + \frac{\sqrt{409}}{24} = 1.051
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}