Solve for y
y = \frac{\sqrt{921} + 21}{4} \approx 12.836995453
y=\frac{21-\sqrt{921}}{4}\approx -2.336995453
Graph
Share
Copied to clipboard
-2y^{2}+21y=-60
Swap sides so that all variable terms are on the left hand side.
-2y^{2}+21y+60=0
Add 60 to both sides.
y=\frac{-21±\sqrt{21^{2}-4\left(-2\right)\times 60}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 21 for b, and 60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-21±\sqrt{441-4\left(-2\right)\times 60}}{2\left(-2\right)}
Square 21.
y=\frac{-21±\sqrt{441+8\times 60}}{2\left(-2\right)}
Multiply -4 times -2.
y=\frac{-21±\sqrt{441+480}}{2\left(-2\right)}
Multiply 8 times 60.
y=\frac{-21±\sqrt{921}}{2\left(-2\right)}
Add 441 to 480.
y=\frac{-21±\sqrt{921}}{-4}
Multiply 2 times -2.
y=\frac{\sqrt{921}-21}{-4}
Now solve the equation y=\frac{-21±\sqrt{921}}{-4} when ± is plus. Add -21 to \sqrt{921}.
y=\frac{21-\sqrt{921}}{4}
Divide -21+\sqrt{921} by -4.
y=\frac{-\sqrt{921}-21}{-4}
Now solve the equation y=\frac{-21±\sqrt{921}}{-4} when ± is minus. Subtract \sqrt{921} from -21.
y=\frac{\sqrt{921}+21}{4}
Divide -21-\sqrt{921} by -4.
y=\frac{21-\sqrt{921}}{4} y=\frac{\sqrt{921}+21}{4}
The equation is now solved.
-2y^{2}+21y=-60
Swap sides so that all variable terms are on the left hand side.
\frac{-2y^{2}+21y}{-2}=-\frac{60}{-2}
Divide both sides by -2.
y^{2}+\frac{21}{-2}y=-\frac{60}{-2}
Dividing by -2 undoes the multiplication by -2.
y^{2}-\frac{21}{2}y=-\frac{60}{-2}
Divide 21 by -2.
y^{2}-\frac{21}{2}y=30
Divide -60 by -2.
y^{2}-\frac{21}{2}y+\left(-\frac{21}{4}\right)^{2}=30+\left(-\frac{21}{4}\right)^{2}
Divide -\frac{21}{2}, the coefficient of the x term, by 2 to get -\frac{21}{4}. Then add the square of -\frac{21}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{21}{2}y+\frac{441}{16}=30+\frac{441}{16}
Square -\frac{21}{4} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{21}{2}y+\frac{441}{16}=\frac{921}{16}
Add 30 to \frac{441}{16}.
\left(y-\frac{21}{4}\right)^{2}=\frac{921}{16}
Factor y^{2}-\frac{21}{2}y+\frac{441}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{21}{4}\right)^{2}}=\sqrt{\frac{921}{16}}
Take the square root of both sides of the equation.
y-\frac{21}{4}=\frac{\sqrt{921}}{4} y-\frac{21}{4}=-\frac{\sqrt{921}}{4}
Simplify.
y=\frac{\sqrt{921}+21}{4} y=\frac{21-\sqrt{921}}{4}
Add \frac{21}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}