Evaluate
\frac{1}{6}\approx 0.166666667
Factor
\frac{1}{2 \cdot 3} = 0.16666666666666666
Share
Copied to clipboard
-6.75+\frac{24+1}{6}+\frac{2\times 4+3}{4}
Multiply 4 and 6 to get 24.
-6.75+\frac{25}{6}+\frac{2\times 4+3}{4}
Add 24 and 1 to get 25.
-\frac{27}{4}+\frac{25}{6}+\frac{2\times 4+3}{4}
Convert decimal number -6.75 to fraction -\frac{675}{100}. Reduce the fraction -\frac{675}{100} to lowest terms by extracting and canceling out 25.
-\frac{81}{12}+\frac{50}{12}+\frac{2\times 4+3}{4}
Least common multiple of 4 and 6 is 12. Convert -\frac{27}{4} and \frac{25}{6} to fractions with denominator 12.
\frac{-81+50}{12}+\frac{2\times 4+3}{4}
Since -\frac{81}{12} and \frac{50}{12} have the same denominator, add them by adding their numerators.
-\frac{31}{12}+\frac{2\times 4+3}{4}
Add -81 and 50 to get -31.
-\frac{31}{12}+\frac{8+3}{4}
Multiply 2 and 4 to get 8.
-\frac{31}{12}+\frac{11}{4}
Add 8 and 3 to get 11.
-\frac{31}{12}+\frac{33}{12}
Least common multiple of 12 and 4 is 12. Convert -\frac{31}{12} and \frac{11}{4} to fractions with denominator 12.
\frac{-31+33}{12}
Since -\frac{31}{12} and \frac{33}{12} have the same denominator, add them by adding their numerators.
\frac{2}{12}
Add -31 and 33 to get 2.
\frac{1}{6}
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}