Solve for m
m=-5.2
Share
Copied to clipboard
-3.5m-1.1=\frac{-107.73}{-6.3}
Divide both sides by -6.3.
-3.5m-1.1=\frac{-10773}{-630}
Expand \frac{-107.73}{-6.3} by multiplying both numerator and the denominator by 100.
-3.5m-1.1=\frac{171}{10}
Reduce the fraction \frac{-10773}{-630} to lowest terms by extracting and canceling out -63.
-3.5m=\frac{171}{10}+1.1
Add 1.1 to both sides.
-3.5m=\frac{171}{10}+\frac{11}{10}
Convert decimal number 1.1 to fraction \frac{11}{10}.
-3.5m=\frac{171+11}{10}
Since \frac{171}{10} and \frac{11}{10} have the same denominator, add them by adding their numerators.
-3.5m=\frac{182}{10}
Add 171 and 11 to get 182.
-3.5m=\frac{91}{5}
Reduce the fraction \frac{182}{10} to lowest terms by extracting and canceling out 2.
m=\frac{\frac{91}{5}}{-3.5}
Divide both sides by -3.5.
m=\frac{91}{5\left(-3.5\right)}
Express \frac{\frac{91}{5}}{-3.5} as a single fraction.
m=\frac{91}{-17.5}
Multiply 5 and -3.5 to get -17.5.
m=\frac{910}{-175}
Expand \frac{91}{-17.5} by multiplying both numerator and the denominator by 10.
m=-\frac{26}{5}
Reduce the fraction \frac{910}{-175} to lowest terms by extracting and canceling out 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}