Solve for y
y=\frac{-\sqrt{47}i-1}{12}\approx -0.083333333-0.57130455i
y=\frac{-1+\sqrt{47}i}{12}\approx -0.083333333+0.57130455i
Share
Copied to clipboard
-6y^{2}-y-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-1\right)±\sqrt{1-4\left(-6\right)\left(-2\right)}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, -1 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-1\right)±\sqrt{1+24\left(-2\right)}}{2\left(-6\right)}
Multiply -4 times -6.
y=\frac{-\left(-1\right)±\sqrt{1-48}}{2\left(-6\right)}
Multiply 24 times -2.
y=\frac{-\left(-1\right)±\sqrt{-47}}{2\left(-6\right)}
Add 1 to -48.
y=\frac{-\left(-1\right)±\sqrt{47}i}{2\left(-6\right)}
Take the square root of -47.
y=\frac{1±\sqrt{47}i}{2\left(-6\right)}
The opposite of -1 is 1.
y=\frac{1±\sqrt{47}i}{-12}
Multiply 2 times -6.
y=\frac{1+\sqrt{47}i}{-12}
Now solve the equation y=\frac{1±\sqrt{47}i}{-12} when ± is plus. Add 1 to i\sqrt{47}.
y=\frac{-\sqrt{47}i-1}{12}
Divide 1+i\sqrt{47} by -12.
y=\frac{-\sqrt{47}i+1}{-12}
Now solve the equation y=\frac{1±\sqrt{47}i}{-12} when ± is minus. Subtract i\sqrt{47} from 1.
y=\frac{-1+\sqrt{47}i}{12}
Divide 1-i\sqrt{47} by -12.
y=\frac{-\sqrt{47}i-1}{12} y=\frac{-1+\sqrt{47}i}{12}
The equation is now solved.
-6y^{2}-y-2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-6y^{2}-y-2-\left(-2\right)=-\left(-2\right)
Add 2 to both sides of the equation.
-6y^{2}-y=-\left(-2\right)
Subtracting -2 from itself leaves 0.
-6y^{2}-y=2
Subtract -2 from 0.
\frac{-6y^{2}-y}{-6}=\frac{2}{-6}
Divide both sides by -6.
y^{2}+\left(-\frac{1}{-6}\right)y=\frac{2}{-6}
Dividing by -6 undoes the multiplication by -6.
y^{2}+\frac{1}{6}y=\frac{2}{-6}
Divide -1 by -6.
y^{2}+\frac{1}{6}y=-\frac{1}{3}
Reduce the fraction \frac{2}{-6} to lowest terms by extracting and canceling out 2.
y^{2}+\frac{1}{6}y+\left(\frac{1}{12}\right)^{2}=-\frac{1}{3}+\left(\frac{1}{12}\right)^{2}
Divide \frac{1}{6}, the coefficient of the x term, by 2 to get \frac{1}{12}. Then add the square of \frac{1}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{1}{6}y+\frac{1}{144}=-\frac{1}{3}+\frac{1}{144}
Square \frac{1}{12} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{1}{6}y+\frac{1}{144}=-\frac{47}{144}
Add -\frac{1}{3} to \frac{1}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{1}{12}\right)^{2}=-\frac{47}{144}
Factor y^{2}+\frac{1}{6}y+\frac{1}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{1}{12}\right)^{2}}=\sqrt{-\frac{47}{144}}
Take the square root of both sides of the equation.
y+\frac{1}{12}=\frac{\sqrt{47}i}{12} y+\frac{1}{12}=-\frac{\sqrt{47}i}{12}
Simplify.
y=\frac{-1+\sqrt{47}i}{12} y=\frac{-\sqrt{47}i-1}{12}
Subtract \frac{1}{12} from both sides of the equation.
x ^ 2 +\frac{1}{6}x +\frac{1}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{1}{6} rs = \frac{1}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{12} - u s = -\frac{1}{12} + u
Two numbers r and s sum up to -\frac{1}{6} exactly when the average of the two numbers is \frac{1}{2}*-\frac{1}{6} = -\frac{1}{12}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{12} - u) (-\frac{1}{12} + u) = \frac{1}{3}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{1}{3}
\frac{1}{144} - u^2 = \frac{1}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{1}{3}-\frac{1}{144} = \frac{47}{144}
Simplify the expression by subtracting \frac{1}{144} on both sides
u^2 = -\frac{47}{144} u = \pm\sqrt{-\frac{47}{144}} = \pm \frac{\sqrt{47}}{12}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{12} - \frac{\sqrt{47}}{12}i = -0.083 - 0.571i s = -\frac{1}{12} + \frac{\sqrt{47}}{12}i = -0.083 + 0.571i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}