- 6 x ^ { 4 } + 5 x ^ { 2 } + 1 + 11 x \text { by } 2 x ^ { 2 } + 1
Differentiate w.r.t. x
2x\left(5+33bxy-12x^{2}\right)
Evaluate
2+22byx^{3}+5x^{2}-6x^{4}
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}x}(-6x^{4}+5x^{2}+1+11x^{3}by\times 2+1)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\mathrm{d}}{\mathrm{d}x}(-6x^{4}+5x^{2}+1+22x^{3}by+1)
Multiply 11 and 2 to get 22.
\frac{\mathrm{d}}{\mathrm{d}x}(-6x^{4}+5x^{2}+2+22x^{3}by)
Add 1 and 1 to get 2.
4\left(-6\right)x^{4-1}+2\times 5x^{2-1}+3\times 22byx^{3-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-24x^{4-1}+2\times 5x^{2-1}+3\times 22byx^{3-1}
Multiply 4 times -6.
-24x^{3}+2\times 5x^{2-1}+3\times 22byx^{3-1}
Subtract 1 from 4.
-24x^{3}+10x^{2-1}+3\times 22byx^{3-1}
Multiply 2 times 5.
-24x^{3}+10x^{1}+3\times 22byx^{3-1}
Subtract 1 from 2.
-24x^{3}+10x^{1}+66byx^{3-1}
Multiply 2 times 5.
-24x^{3}+10x^{1}+66byx^{2}
Subtract 1 from 3.
-24x^{3}+10x+66byx^{2}
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}