Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-6x^{2}-3x=-3
Subtract 3x from both sides.
-6x^{2}-3x+3=0
Add 3 to both sides.
-2x^{2}-x+1=0
Divide both sides by 3.
a+b=-1 ab=-2=-2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2x^{2}+ax+bx+1. To find a and b, set up a system to be solved.
a=1 b=-2
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(-2x^{2}+x\right)+\left(-2x+1\right)
Rewrite -2x^{2}-x+1 as \left(-2x^{2}+x\right)+\left(-2x+1\right).
-x\left(2x-1\right)-\left(2x-1\right)
Factor out -x in the first and -1 in the second group.
\left(2x-1\right)\left(-x-1\right)
Factor out common term 2x-1 by using distributive property.
x=\frac{1}{2} x=-1
To find equation solutions, solve 2x-1=0 and -x-1=0.
-6x^{2}-3x=-3
Subtract 3x from both sides.
-6x^{2}-3x+3=0
Add 3 to both sides.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-6\right)\times 3}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, -3 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-6\right)\times 3}}{2\left(-6\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+24\times 3}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-\left(-3\right)±\sqrt{9+72}}{2\left(-6\right)}
Multiply 24 times 3.
x=\frac{-\left(-3\right)±\sqrt{81}}{2\left(-6\right)}
Add 9 to 72.
x=\frac{-\left(-3\right)±9}{2\left(-6\right)}
Take the square root of 81.
x=\frac{3±9}{2\left(-6\right)}
The opposite of -3 is 3.
x=\frac{3±9}{-12}
Multiply 2 times -6.
x=\frac{12}{-12}
Now solve the equation x=\frac{3±9}{-12} when ± is plus. Add 3 to 9.
x=-1
Divide 12 by -12.
x=-\frac{6}{-12}
Now solve the equation x=\frac{3±9}{-12} when ± is minus. Subtract 9 from 3.
x=\frac{1}{2}
Reduce the fraction \frac{-6}{-12} to lowest terms by extracting and canceling out 6.
x=-1 x=\frac{1}{2}
The equation is now solved.
-6x^{2}-3x=-3
Subtract 3x from both sides.
\frac{-6x^{2}-3x}{-6}=-\frac{3}{-6}
Divide both sides by -6.
x^{2}+\left(-\frac{3}{-6}\right)x=-\frac{3}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}+\frac{1}{2}x=-\frac{3}{-6}
Reduce the fraction \frac{-3}{-6} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{1}{2}x=\frac{1}{2}
Reduce the fraction \frac{-3}{-6} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
Add \frac{1}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{4}=-\frac{3}{4}
Simplify.
x=\frac{1}{2} x=-1
Subtract \frac{1}{4} from both sides of the equation.