Factor
-\left(2v+1\right)\left(3v+4\right)
Evaluate
-6v^{2}-11v-4
Share
Copied to clipboard
a+b=-11 ab=-6\left(-4\right)=24
Factor the expression by grouping. First, the expression needs to be rewritten as -6v^{2}+av+bv-4. To find a and b, set up a system to be solved.
-1,-24 -2,-12 -3,-8 -4,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Calculate the sum for each pair.
a=-3 b=-8
The solution is the pair that gives sum -11.
\left(-6v^{2}-3v\right)+\left(-8v-4\right)
Rewrite -6v^{2}-11v-4 as \left(-6v^{2}-3v\right)+\left(-8v-4\right).
-3v\left(2v+1\right)-4\left(2v+1\right)
Factor out -3v in the first and -4 in the second group.
\left(2v+1\right)\left(-3v-4\right)
Factor out common term 2v+1 by using distributive property.
-6v^{2}-11v-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
v=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-6\right)\left(-4\right)}}{2\left(-6\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-\left(-11\right)±\sqrt{121-4\left(-6\right)\left(-4\right)}}{2\left(-6\right)}
Square -11.
v=\frac{-\left(-11\right)±\sqrt{121+24\left(-4\right)}}{2\left(-6\right)}
Multiply -4 times -6.
v=\frac{-\left(-11\right)±\sqrt{121-96}}{2\left(-6\right)}
Multiply 24 times -4.
v=\frac{-\left(-11\right)±\sqrt{25}}{2\left(-6\right)}
Add 121 to -96.
v=\frac{-\left(-11\right)±5}{2\left(-6\right)}
Take the square root of 25.
v=\frac{11±5}{2\left(-6\right)}
The opposite of -11 is 11.
v=\frac{11±5}{-12}
Multiply 2 times -6.
v=\frac{16}{-12}
Now solve the equation v=\frac{11±5}{-12} when ± is plus. Add 11 to 5.
v=-\frac{4}{3}
Reduce the fraction \frac{16}{-12} to lowest terms by extracting and canceling out 4.
v=\frac{6}{-12}
Now solve the equation v=\frac{11±5}{-12} when ± is minus. Subtract 5 from 11.
v=-\frac{1}{2}
Reduce the fraction \frac{6}{-12} to lowest terms by extracting and canceling out 6.
-6v^{2}-11v-4=-6\left(v-\left(-\frac{4}{3}\right)\right)\left(v-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{4}{3} for x_{1} and -\frac{1}{2} for x_{2}.
-6v^{2}-11v-4=-6\left(v+\frac{4}{3}\right)\left(v+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-6v^{2}-11v-4=-6\times \frac{-3v-4}{-3}\left(v+\frac{1}{2}\right)
Add \frac{4}{3} to v by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-6v^{2}-11v-4=-6\times \frac{-3v-4}{-3}\times \frac{-2v-1}{-2}
Add \frac{1}{2} to v by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-6v^{2}-11v-4=-6\times \frac{\left(-3v-4\right)\left(-2v-1\right)}{-3\left(-2\right)}
Multiply \frac{-3v-4}{-3} times \frac{-2v-1}{-2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-6v^{2}-11v-4=-6\times \frac{\left(-3v-4\right)\left(-2v-1\right)}{6}
Multiply -3 times -2.
-6v^{2}-11v-4=-\left(-3v-4\right)\left(-2v-1\right)
Cancel out 6, the greatest common factor in -6 and 6.
x ^ 2 +\frac{11}{6}x +\frac{2}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{11}{6} rs = \frac{2}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{11}{12} - u s = -\frac{11}{12} + u
Two numbers r and s sum up to -\frac{11}{6} exactly when the average of the two numbers is \frac{1}{2}*-\frac{11}{6} = -\frac{11}{12}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{11}{12} - u) (-\frac{11}{12} + u) = \frac{2}{3}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{2}{3}
\frac{121}{144} - u^2 = \frac{2}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{2}{3}-\frac{121}{144} = -\frac{25}{144}
Simplify the expression by subtracting \frac{121}{144} on both sides
u^2 = \frac{25}{144} u = \pm\sqrt{\frac{25}{144}} = \pm \frac{5}{12}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{11}{12} - \frac{5}{12} = -1.333 s = -\frac{11}{12} + \frac{5}{12} = -0.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}