Solve for u
u=\frac{11}{48}\approx 0.229166667
Share
Copied to clipboard
-6u+\frac{1}{2}+\frac{6}{5}u=-\frac{3}{5}
Add \frac{6}{5}u to both sides.
-\frac{24}{5}u+\frac{1}{2}=-\frac{3}{5}
Combine -6u and \frac{6}{5}u to get -\frac{24}{5}u.
-\frac{24}{5}u=-\frac{3}{5}-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
-\frac{24}{5}u=-\frac{6}{10}-\frac{5}{10}
Least common multiple of 5 and 2 is 10. Convert -\frac{3}{5} and \frac{1}{2} to fractions with denominator 10.
-\frac{24}{5}u=\frac{-6-5}{10}
Since -\frac{6}{10} and \frac{5}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{24}{5}u=-\frac{11}{10}
Subtract 5 from -6 to get -11.
u=-\frac{11}{10}\left(-\frac{5}{24}\right)
Multiply both sides by -\frac{5}{24}, the reciprocal of -\frac{24}{5}.
u=\frac{-11\left(-5\right)}{10\times 24}
Multiply -\frac{11}{10} times -\frac{5}{24} by multiplying numerator times numerator and denominator times denominator.
u=\frac{55}{240}
Do the multiplications in the fraction \frac{-11\left(-5\right)}{10\times 24}.
u=\frac{11}{48}
Reduce the fraction \frac{55}{240} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}