Solve for p
p=1
Share
Copied to clipboard
2\sqrt{p^{2}+8}=6p
Subtract -6p from both sides of the equation.
\left(2\sqrt{p^{2}+8}\right)^{2}=\left(6p\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{p^{2}+8}\right)^{2}=\left(6p\right)^{2}
Expand \left(2\sqrt{p^{2}+8}\right)^{2}.
4\left(\sqrt{p^{2}+8}\right)^{2}=\left(6p\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(p^{2}+8\right)=\left(6p\right)^{2}
Calculate \sqrt{p^{2}+8} to the power of 2 and get p^{2}+8.
4p^{2}+32=\left(6p\right)^{2}
Use the distributive property to multiply 4 by p^{2}+8.
4p^{2}+32=6^{2}p^{2}
Expand \left(6p\right)^{2}.
4p^{2}+32=36p^{2}
Calculate 6 to the power of 2 and get 36.
4p^{2}+32-36p^{2}=0
Subtract 36p^{2} from both sides.
-32p^{2}+32=0
Combine 4p^{2} and -36p^{2} to get -32p^{2}.
-32p^{2}=-32
Subtract 32 from both sides. Anything subtracted from zero gives its negation.
p^{2}=\frac{-32}{-32}
Divide both sides by -32.
p^{2}=1
Divide -32 by -32 to get 1.
p=1 p=-1
Take the square root of both sides of the equation.
-6+2\sqrt{1^{2}+8}=0
Substitute 1 for p in the equation -6p+2\sqrt{p^{2}+8}=0.
0=0
Simplify. The value p=1 satisfies the equation.
-6\left(-1\right)+2\sqrt{\left(-1\right)^{2}+8}=0
Substitute -1 for p in the equation -6p+2\sqrt{p^{2}+8}=0.
12=0
Simplify. The value p=-1 does not satisfy the equation.
p=1
Equation 2\sqrt{p^{2}+8}=6p has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}