Factor
3a\left(5-b\right)\left(2b-25\right)
Evaluate
3a\left(5-b\right)\left(2b-25\right)
Share
Copied to clipboard
3\left(-2ab^{2}+35ab-125a\right)
Factor out 3.
a\left(-2b^{2}+35b-125\right)
Consider -2ab^{2}+35ab-125a. Factor out a.
p+q=35 pq=-2\left(-125\right)=250
Consider -2b^{2}+35b-125. Factor the expression by grouping. First, the expression needs to be rewritten as -2b^{2}+pb+qb-125. To find p and q, set up a system to be solved.
1,250 2,125 5,50 10,25
Since pq is positive, p and q have the same sign. Since p+q is positive, p and q are both positive. List all such integer pairs that give product 250.
1+250=251 2+125=127 5+50=55 10+25=35
Calculate the sum for each pair.
p=25 q=10
The solution is the pair that gives sum 35.
\left(-2b^{2}+25b\right)+\left(10b-125\right)
Rewrite -2b^{2}+35b-125 as \left(-2b^{2}+25b\right)+\left(10b-125\right).
-b\left(2b-25\right)+5\left(2b-25\right)
Factor out -b in the first and 5 in the second group.
\left(2b-25\right)\left(-b+5\right)
Factor out common term 2b-25 by using distributive property.
3a\left(2b-25\right)\left(-b+5\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}