Solve for x
x = \frac{41}{9} = 4\frac{5}{9} \approx 4.555555556
Graph
Share
Copied to clipboard
-6x+18-5=3\left(x-9\right)-1
Use the distributive property to multiply -6 by x-3.
-6x+13=3\left(x-9\right)-1
Subtract 5 from 18 to get 13.
-6x+13=3x-27-1
Use the distributive property to multiply 3 by x-9.
-6x+13=3x-28
Subtract 1 from -27 to get -28.
-6x+13-3x=-28
Subtract 3x from both sides.
-9x+13=-28
Combine -6x and -3x to get -9x.
-9x=-28-13
Subtract 13 from both sides.
-9x=-41
Subtract 13 from -28 to get -41.
x=\frac{-41}{-9}
Divide both sides by -9.
x=\frac{41}{9}
Fraction \frac{-41}{-9} can be simplified to \frac{41}{9} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}