Evaluate
-8
Factor
-8
Share
Copied to clipboard
-\frac{48+3}{8}-\left(2+\frac{-\frac{4}{7}}{\frac{1\times 21+11}{21}}\right)
Multiply 6 and 8 to get 48.
-\frac{51}{8}-\left(2+\frac{-\frac{4}{7}}{\frac{1\times 21+11}{21}}\right)
Add 48 and 3 to get 51.
-\frac{51}{8}-\left(2+\frac{-4\times 21}{7\left(1\times 21+11\right)}\right)
Divide -\frac{4}{7} by \frac{1\times 21+11}{21} by multiplying -\frac{4}{7} by the reciprocal of \frac{1\times 21+11}{21}.
-\frac{51}{8}-\left(2+\frac{-4\times 3}{11+21}\right)
Cancel out 7 in both numerator and denominator.
-\frac{51}{8}-\left(2+\frac{-12}{11+21}\right)
Multiply -4 and 3 to get -12.
-\frac{51}{8}-\left(2+\frac{-12}{32}\right)
Add 11 and 21 to get 32.
-\frac{51}{8}-\left(2-\frac{3}{8}\right)
Reduce the fraction \frac{-12}{32} to lowest terms by extracting and canceling out 4.
-\frac{51}{8}-\left(\frac{16}{8}-\frac{3}{8}\right)
Convert 2 to fraction \frac{16}{8}.
-\frac{51}{8}-\frac{16-3}{8}
Since \frac{16}{8} and \frac{3}{8} have the same denominator, subtract them by subtracting their numerators.
-\frac{51}{8}-\frac{13}{8}
Subtract 3 from 16 to get 13.
\frac{-51-13}{8}
Since -\frac{51}{8} and \frac{13}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{-64}{8}
Subtract 13 from -51 to get -64.
-8
Divide -64 by 8 to get -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}