- 6 = - \frac { k } { 3 } | K = ?
Solve for K
K=-\frac{18}{k}
K=\frac{18}{k}\text{, }k>0
Solve for k
k=\frac{18}{|K|}
K\neq 0
Share
Copied to clipboard
-18=3\left(-\frac{k}{3}\right)|K|
Multiply both sides of the equation by 3.
-18=\frac{-3k}{3}|K|
Express 3\left(-\frac{k}{3}\right) as a single fraction.
-18=-k|K|
Cancel out 3 and 3.
-k|K|=-18
Swap sides so that all variable terms are on the left hand side.
\left(-k\right)|K|=-18
Combine like terms and use the properties of equality to get the variable on one side of the equal sign and the numbers on the other side. Remember to follow the order of operations.
|K|=\frac{18}{k}
Divide both sides by -k.
K=\frac{18}{k} K=-\frac{18}{k}
Use the definition of absolute value.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}