Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(-9x-7x^{2}\right)
Factor out 6.
x\left(-9-7x\right)
Consider -9x-7x^{2}. Factor out x.
6x\left(-7x-9\right)
Rewrite the complete factored expression.
-42x^{2}-54x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-54\right)±\sqrt{\left(-54\right)^{2}}}{2\left(-42\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-54\right)±54}{2\left(-42\right)}
Take the square root of \left(-54\right)^{2}.
x=\frac{54±54}{2\left(-42\right)}
The opposite of -54 is 54.
x=\frac{54±54}{-84}
Multiply 2 times -42.
x=\frac{108}{-84}
Now solve the equation x=\frac{54±54}{-84} when ± is plus. Add 54 to 54.
x=-\frac{9}{7}
Reduce the fraction \frac{108}{-84} to lowest terms by extracting and canceling out 12.
x=\frac{0}{-84}
Now solve the equation x=\frac{54±54}{-84} when ± is minus. Subtract 54 from 54.
x=0
Divide 0 by -84.
-42x^{2}-54x=-42\left(x-\left(-\frac{9}{7}\right)\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{9}{7} for x_{1} and 0 for x_{2}.
-42x^{2}-54x=-42\left(x+\frac{9}{7}\right)x
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-42x^{2}-54x=-42\times \frac{-7x-9}{-7}x
Add \frac{9}{7} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-42x^{2}-54x=6\left(-7x-9\right)x
Cancel out 7, the greatest common factor in -42 and -7.