Evaluate
\frac{2qa^{10}}{7}
Expand
\frac{2qa^{10}}{7}
Share
Copied to clipboard
-54q\times \frac{\left(-7\right)^{-1}\left(a^{2}\right)^{-1}}{\left(3a^{-4}\right)^{3}}
Expand \left(-7a^{2}\right)^{-1}.
-54q\times \frac{\left(-7\right)^{-1}a^{-2}}{\left(3a^{-4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
-54q\times \frac{-\frac{1}{7}a^{-2}}{\left(3a^{-4}\right)^{3}}
Calculate -7 to the power of -1 and get -\frac{1}{7}.
-54q\times \frac{-\frac{1}{7}a^{-2}}{3^{3}\left(a^{-4}\right)^{3}}
Expand \left(3a^{-4}\right)^{3}.
-54q\times \frac{-\frac{1}{7}a^{-2}}{3^{3}a^{-12}}
To raise a power to another power, multiply the exponents. Multiply -4 and 3 to get -12.
-54q\times \frac{-\frac{1}{7}a^{-2}}{27a^{-12}}
Calculate 3 to the power of 3 and get 27.
-54q\times \frac{-\frac{1}{7}a^{10}}{27}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
-54q\left(-\frac{1}{189}\right)a^{10}
Divide -\frac{1}{7}a^{10} by 27 to get -\frac{1}{189}a^{10}.
\frac{2}{7}qa^{10}
Multiply -54 and -\frac{1}{189} to get \frac{2}{7}.
-54q\times \frac{\left(-7\right)^{-1}\left(a^{2}\right)^{-1}}{\left(3a^{-4}\right)^{3}}
Expand \left(-7a^{2}\right)^{-1}.
-54q\times \frac{\left(-7\right)^{-1}a^{-2}}{\left(3a^{-4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
-54q\times \frac{-\frac{1}{7}a^{-2}}{\left(3a^{-4}\right)^{3}}
Calculate -7 to the power of -1 and get -\frac{1}{7}.
-54q\times \frac{-\frac{1}{7}a^{-2}}{3^{3}\left(a^{-4}\right)^{3}}
Expand \left(3a^{-4}\right)^{3}.
-54q\times \frac{-\frac{1}{7}a^{-2}}{3^{3}a^{-12}}
To raise a power to another power, multiply the exponents. Multiply -4 and 3 to get -12.
-54q\times \frac{-\frac{1}{7}a^{-2}}{27a^{-12}}
Calculate 3 to the power of 3 and get 27.
-54q\times \frac{-\frac{1}{7}a^{10}}{27}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
-54q\left(-\frac{1}{189}\right)a^{10}
Divide -\frac{1}{7}a^{10} by 27 to get -\frac{1}{189}a^{10}.
\frac{2}{7}qa^{10}
Multiply -54 and -\frac{1}{189} to get \frac{2}{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}