Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

-54q\times \frac{\left(-7\right)^{-1}\left(a^{2}\right)^{-1}}{\left(3a^{-4}\right)^{3}}
Expand \left(-7a^{2}\right)^{-1}.
-54q\times \frac{\left(-7\right)^{-1}a^{-2}}{\left(3a^{-4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
-54q\times \frac{-\frac{1}{7}a^{-2}}{\left(3a^{-4}\right)^{3}}
Calculate -7 to the power of -1 and get -\frac{1}{7}.
-54q\times \frac{-\frac{1}{7}a^{-2}}{3^{3}\left(a^{-4}\right)^{3}}
Expand \left(3a^{-4}\right)^{3}.
-54q\times \frac{-\frac{1}{7}a^{-2}}{3^{3}a^{-12}}
To raise a power to another power, multiply the exponents. Multiply -4 and 3 to get -12.
-54q\times \frac{-\frac{1}{7}a^{-2}}{27a^{-12}}
Calculate 3 to the power of 3 and get 27.
-54q\times \frac{-\frac{1}{7}a^{10}}{27}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
-54q\left(-\frac{1}{189}\right)a^{10}
Divide -\frac{1}{7}a^{10} by 27 to get -\frac{1}{189}a^{10}.
\frac{2}{7}qa^{10}
Multiply -54 and -\frac{1}{189} to get \frac{2}{7}.
-54q\times \frac{\left(-7\right)^{-1}\left(a^{2}\right)^{-1}}{\left(3a^{-4}\right)^{3}}
Expand \left(-7a^{2}\right)^{-1}.
-54q\times \frac{\left(-7\right)^{-1}a^{-2}}{\left(3a^{-4}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
-54q\times \frac{-\frac{1}{7}a^{-2}}{\left(3a^{-4}\right)^{3}}
Calculate -7 to the power of -1 and get -\frac{1}{7}.
-54q\times \frac{-\frac{1}{7}a^{-2}}{3^{3}\left(a^{-4}\right)^{3}}
Expand \left(3a^{-4}\right)^{3}.
-54q\times \frac{-\frac{1}{7}a^{-2}}{3^{3}a^{-12}}
To raise a power to another power, multiply the exponents. Multiply -4 and 3 to get -12.
-54q\times \frac{-\frac{1}{7}a^{-2}}{27a^{-12}}
Calculate 3 to the power of 3 and get 27.
-54q\times \frac{-\frac{1}{7}a^{10}}{27}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
-54q\left(-\frac{1}{189}\right)a^{10}
Divide -\frac{1}{7}a^{10} by 27 to get -\frac{1}{189}a^{10}.
\frac{2}{7}qa^{10}
Multiply -54 and -\frac{1}{189} to get \frac{2}{7}.