Solve for x
x=\frac{-\sqrt{69}-7}{10}\approx -1.530662386
x=\frac{\sqrt{69}-7}{10}\approx 0.130662386
Graph
Share
Copied to clipboard
\left(x+1\right)^{2}\left(-50000\right)+\left(x+1\right)\times 30000+30000=0
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)^{2}, the least common multiple of 1+x,\left(1+x\right)^{2}.
\left(x^{2}+2x+1\right)\left(-50000\right)+\left(x+1\right)\times 30000+30000=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
-50000x^{2}-100000x-50000+\left(x+1\right)\times 30000+30000=0
Use the distributive property to multiply x^{2}+2x+1 by -50000.
-50000x^{2}-100000x-50000+30000x+30000+30000=0
Use the distributive property to multiply x+1 by 30000.
-50000x^{2}-70000x-50000+30000+30000=0
Combine -100000x and 30000x to get -70000x.
-50000x^{2}-70000x-20000+30000=0
Add -50000 and 30000 to get -20000.
-50000x^{2}-70000x+10000=0
Add -20000 and 30000 to get 10000.
x=\frac{-\left(-70000\right)±\sqrt{\left(-70000\right)^{2}-4\left(-50000\right)\times 10000}}{2\left(-50000\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -50000 for a, -70000 for b, and 10000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-70000\right)±\sqrt{4900000000-4\left(-50000\right)\times 10000}}{2\left(-50000\right)}
Square -70000.
x=\frac{-\left(-70000\right)±\sqrt{4900000000+200000\times 10000}}{2\left(-50000\right)}
Multiply -4 times -50000.
x=\frac{-\left(-70000\right)±\sqrt{4900000000+2000000000}}{2\left(-50000\right)}
Multiply 200000 times 10000.
x=\frac{-\left(-70000\right)±\sqrt{6900000000}}{2\left(-50000\right)}
Add 4900000000 to 2000000000.
x=\frac{-\left(-70000\right)±10000\sqrt{69}}{2\left(-50000\right)}
Take the square root of 6900000000.
x=\frac{70000±10000\sqrt{69}}{2\left(-50000\right)}
The opposite of -70000 is 70000.
x=\frac{70000±10000\sqrt{69}}{-100000}
Multiply 2 times -50000.
x=\frac{10000\sqrt{69}+70000}{-100000}
Now solve the equation x=\frac{70000±10000\sqrt{69}}{-100000} when ± is plus. Add 70000 to 10000\sqrt{69}.
x=\frac{-\sqrt{69}-7}{10}
Divide 70000+10000\sqrt{69} by -100000.
x=\frac{70000-10000\sqrt{69}}{-100000}
Now solve the equation x=\frac{70000±10000\sqrt{69}}{-100000} when ± is minus. Subtract 10000\sqrt{69} from 70000.
x=\frac{\sqrt{69}-7}{10}
Divide 70000-10000\sqrt{69} by -100000.
x=\frac{-\sqrt{69}-7}{10} x=\frac{\sqrt{69}-7}{10}
The equation is now solved.
\left(x+1\right)^{2}\left(-50000\right)+\left(x+1\right)\times 30000+30000=0
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)^{2}, the least common multiple of 1+x,\left(1+x\right)^{2}.
\left(x^{2}+2x+1\right)\left(-50000\right)+\left(x+1\right)\times 30000+30000=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
-50000x^{2}-100000x-50000+\left(x+1\right)\times 30000+30000=0
Use the distributive property to multiply x^{2}+2x+1 by -50000.
-50000x^{2}-100000x-50000+30000x+30000+30000=0
Use the distributive property to multiply x+1 by 30000.
-50000x^{2}-70000x-50000+30000+30000=0
Combine -100000x and 30000x to get -70000x.
-50000x^{2}-70000x-20000+30000=0
Add -50000 and 30000 to get -20000.
-50000x^{2}-70000x+10000=0
Add -20000 and 30000 to get 10000.
-50000x^{2}-70000x=-10000
Subtract 10000 from both sides. Anything subtracted from zero gives its negation.
\frac{-50000x^{2}-70000x}{-50000}=-\frac{10000}{-50000}
Divide both sides by -50000.
x^{2}+\left(-\frac{70000}{-50000}\right)x=-\frac{10000}{-50000}
Dividing by -50000 undoes the multiplication by -50000.
x^{2}+\frac{7}{5}x=-\frac{10000}{-50000}
Reduce the fraction \frac{-70000}{-50000} to lowest terms by extracting and canceling out 10000.
x^{2}+\frac{7}{5}x=\frac{1}{5}
Reduce the fraction \frac{-10000}{-50000} to lowest terms by extracting and canceling out 10000.
x^{2}+\frac{7}{5}x+\left(\frac{7}{10}\right)^{2}=\frac{1}{5}+\left(\frac{7}{10}\right)^{2}
Divide \frac{7}{5}, the coefficient of the x term, by 2 to get \frac{7}{10}. Then add the square of \frac{7}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{5}x+\frac{49}{100}=\frac{1}{5}+\frac{49}{100}
Square \frac{7}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{5}x+\frac{49}{100}=\frac{69}{100}
Add \frac{1}{5} to \frac{49}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{10}\right)^{2}=\frac{69}{100}
Factor x^{2}+\frac{7}{5}x+\frac{49}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{10}\right)^{2}}=\sqrt{\frac{69}{100}}
Take the square root of both sides of the equation.
x+\frac{7}{10}=\frac{\sqrt{69}}{10} x+\frac{7}{10}=-\frac{\sqrt{69}}{10}
Simplify.
x=\frac{\sqrt{69}-7}{10} x=\frac{-\sqrt{69}-7}{10}
Subtract \frac{7}{10} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}