Solve for x
x=-\frac{7\sqrt{5}}{20}-\frac{3}{4}\approx -1.532623792
x=\frac{7\sqrt{5}}{20}-\frac{3}{4}\approx 0.032623792
Graph
Share
Copied to clipboard
\left(x+1\right)^{2}\left(-50000\right)+\left(x+1\right)\times 25000+27500=0
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)^{2}, the least common multiple of 1+x,\left(1+x\right)^{2}.
\left(x^{2}+2x+1\right)\left(-50000\right)+\left(x+1\right)\times 25000+27500=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
-50000x^{2}-100000x-50000+\left(x+1\right)\times 25000+27500=0
Use the distributive property to multiply x^{2}+2x+1 by -50000.
-50000x^{2}-100000x-50000+25000x+25000+27500=0
Use the distributive property to multiply x+1 by 25000.
-50000x^{2}-75000x-50000+25000+27500=0
Combine -100000x and 25000x to get -75000x.
-50000x^{2}-75000x-25000+27500=0
Add -50000 and 25000 to get -25000.
-50000x^{2}-75000x+2500=0
Add -25000 and 27500 to get 2500.
x=\frac{-\left(-75000\right)±\sqrt{\left(-75000\right)^{2}-4\left(-50000\right)\times 2500}}{2\left(-50000\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -50000 for a, -75000 for b, and 2500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-75000\right)±\sqrt{5625000000-4\left(-50000\right)\times 2500}}{2\left(-50000\right)}
Square -75000.
x=\frac{-\left(-75000\right)±\sqrt{5625000000+200000\times 2500}}{2\left(-50000\right)}
Multiply -4 times -50000.
x=\frac{-\left(-75000\right)±\sqrt{5625000000+500000000}}{2\left(-50000\right)}
Multiply 200000 times 2500.
x=\frac{-\left(-75000\right)±\sqrt{6125000000}}{2\left(-50000\right)}
Add 5625000000 to 500000000.
x=\frac{-\left(-75000\right)±35000\sqrt{5}}{2\left(-50000\right)}
Take the square root of 6125000000.
x=\frac{75000±35000\sqrt{5}}{2\left(-50000\right)}
The opposite of -75000 is 75000.
x=\frac{75000±35000\sqrt{5}}{-100000}
Multiply 2 times -50000.
x=\frac{35000\sqrt{5}+75000}{-100000}
Now solve the equation x=\frac{75000±35000\sqrt{5}}{-100000} when ± is plus. Add 75000 to 35000\sqrt{5}.
x=-\frac{7\sqrt{5}}{20}-\frac{3}{4}
Divide 75000+35000\sqrt{5} by -100000.
x=\frac{75000-35000\sqrt{5}}{-100000}
Now solve the equation x=\frac{75000±35000\sqrt{5}}{-100000} when ± is minus. Subtract 35000\sqrt{5} from 75000.
x=\frac{7\sqrt{5}}{20}-\frac{3}{4}
Divide 75000-35000\sqrt{5} by -100000.
x=-\frac{7\sqrt{5}}{20}-\frac{3}{4} x=\frac{7\sqrt{5}}{20}-\frac{3}{4}
The equation is now solved.
\left(x+1\right)^{2}\left(-50000\right)+\left(x+1\right)\times 25000+27500=0
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)^{2}, the least common multiple of 1+x,\left(1+x\right)^{2}.
\left(x^{2}+2x+1\right)\left(-50000\right)+\left(x+1\right)\times 25000+27500=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
-50000x^{2}-100000x-50000+\left(x+1\right)\times 25000+27500=0
Use the distributive property to multiply x^{2}+2x+1 by -50000.
-50000x^{2}-100000x-50000+25000x+25000+27500=0
Use the distributive property to multiply x+1 by 25000.
-50000x^{2}-75000x-50000+25000+27500=0
Combine -100000x and 25000x to get -75000x.
-50000x^{2}-75000x-25000+27500=0
Add -50000 and 25000 to get -25000.
-50000x^{2}-75000x+2500=0
Add -25000 and 27500 to get 2500.
-50000x^{2}-75000x=-2500
Subtract 2500 from both sides. Anything subtracted from zero gives its negation.
\frac{-50000x^{2}-75000x}{-50000}=-\frac{2500}{-50000}
Divide both sides by -50000.
x^{2}+\left(-\frac{75000}{-50000}\right)x=-\frac{2500}{-50000}
Dividing by -50000 undoes the multiplication by -50000.
x^{2}+\frac{3}{2}x=-\frac{2500}{-50000}
Reduce the fraction \frac{-75000}{-50000} to lowest terms by extracting and canceling out 25000.
x^{2}+\frac{3}{2}x=\frac{1}{20}
Reduce the fraction \frac{-2500}{-50000} to lowest terms by extracting and canceling out 2500.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{1}{20}+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{1}{20}+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{49}{80}
Add \frac{1}{20} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{4}\right)^{2}=\frac{49}{80}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{80}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{7\sqrt{5}}{20} x+\frac{3}{4}=-\frac{7\sqrt{5}}{20}
Simplify.
x=\frac{7\sqrt{5}}{20}-\frac{3}{4} x=-\frac{7\sqrt{5}}{20}-\frac{3}{4}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}