Solve for t
t=\frac{3737}{2800000000000000}\approx 1.334642857 \cdot 10^{-12}
Share
Copied to clipboard
-5.6\times 10^{13}t=2.46\times 10^{0}-7.72\times 10
Variable t cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by t.
-5.6\times 10000000000000t=2.46\times 10^{0}-7.72\times 10
Calculate 10 to the power of 13 and get 10000000000000.
-56000000000000t=2.46\times 10^{0}-7.72\times 10
Multiply -5.6 and 10000000000000 to get -56000000000000.
-56000000000000t=2.46\times 1-7.72\times 10
Calculate 10 to the power of 0 and get 1.
-56000000000000t=2.46-7.72\times 10
Multiply 2.46 and 1 to get 2.46.
-56000000000000t=2.46-77.2
Multiply 7.72 and 10 to get 77.2.
-56000000000000t=-74.74
Subtract 77.2 from 2.46 to get -74.74.
t=\frac{-74.74}{-56000000000000}
Divide both sides by -56000000000000.
t=\frac{-7474}{-5600000000000000}
Expand \frac{-74.74}{-56000000000000} by multiplying both numerator and the denominator by 100.
t=\frac{3737}{2800000000000000}
Reduce the fraction \frac{-7474}{-5600000000000000} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}