Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

-5z^{2}-3z-11+6z^{2}=0
Add 6z^{2} to both sides.
z^{2}-3z-11=0
Combine -5z^{2} and 6z^{2} to get z^{2}.
z=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-11\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-3\right)±\sqrt{9-4\left(-11\right)}}{2}
Square -3.
z=\frac{-\left(-3\right)±\sqrt{9+44}}{2}
Multiply -4 times -11.
z=\frac{-\left(-3\right)±\sqrt{53}}{2}
Add 9 to 44.
z=\frac{3±\sqrt{53}}{2}
The opposite of -3 is 3.
z=\frac{\sqrt{53}+3}{2}
Now solve the equation z=\frac{3±\sqrt{53}}{2} when ± is plus. Add 3 to \sqrt{53}.
z=\frac{3-\sqrt{53}}{2}
Now solve the equation z=\frac{3±\sqrt{53}}{2} when ± is minus. Subtract \sqrt{53} from 3.
z=\frac{\sqrt{53}+3}{2} z=\frac{3-\sqrt{53}}{2}
The equation is now solved.
-5z^{2}-3z-11+6z^{2}=0
Add 6z^{2} to both sides.
z^{2}-3z-11=0
Combine -5z^{2} and 6z^{2} to get z^{2}.
z^{2}-3z=11
Add 11 to both sides. Anything plus zero gives itself.
z^{2}-3z+\left(-\frac{3}{2}\right)^{2}=11+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-3z+\frac{9}{4}=11+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
z^{2}-3z+\frac{9}{4}=\frac{53}{4}
Add 11 to \frac{9}{4}.
\left(z-\frac{3}{2}\right)^{2}=\frac{53}{4}
Factor z^{2}-3z+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{3}{2}\right)^{2}}=\sqrt{\frac{53}{4}}
Take the square root of both sides of the equation.
z-\frac{3}{2}=\frac{\sqrt{53}}{2} z-\frac{3}{2}=-\frac{\sqrt{53}}{2}
Simplify.
z=\frac{\sqrt{53}+3}{2} z=\frac{3-\sqrt{53}}{2}
Add \frac{3}{2} to both sides of the equation.