Solve for a
a=-\frac{y-1}{y-3}
y\neq 3
Solve for y
y=\frac{3a+1}{a+1}
a\neq -1
Graph
Share
Copied to clipboard
-5y\left(a+1\right)+5\left(-2\right)=-15\left(a+1\right)
Variable a cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by a+1.
-5ya-5y+5\left(-2\right)=-15\left(a+1\right)
Use the distributive property to multiply -5y by a+1.
-5ya-5y-10=-15\left(a+1\right)
Multiply 5 and -2 to get -10.
-5ya-5y-10=-15a-15
Use the distributive property to multiply -15 by a+1.
-5ya-5y-10+15a=-15
Add 15a to both sides.
-5ya-10+15a=-15+5y
Add 5y to both sides.
-5ya+15a=-15+5y+10
Add 10 to both sides.
-5ya+15a=-5+5y
Add -15 and 10 to get -5.
\left(-5y+15\right)a=-5+5y
Combine all terms containing a.
\left(15-5y\right)a=5y-5
The equation is in standard form.
\frac{\left(15-5y\right)a}{15-5y}=\frac{5y-5}{15-5y}
Divide both sides by -5y+15.
a=\frac{5y-5}{15-5y}
Dividing by -5y+15 undoes the multiplication by -5y+15.
a=\frac{y-1}{3-y}
Divide -5+5y by -5y+15.
a=\frac{y-1}{3-y}\text{, }a\neq -1
Variable a cannot be equal to -1.
-5y\left(a+1\right)+5\left(-2\right)=-15\left(a+1\right)
Multiply both sides of the equation by a+1.
-5ya-5y+5\left(-2\right)=-15\left(a+1\right)
Use the distributive property to multiply -5y by a+1.
-5ya-5y-10=-15\left(a+1\right)
Multiply 5 and -2 to get -10.
-5ya-5y-10=-15a-15
Use the distributive property to multiply -15 by a+1.
-5ya-5y=-15a-15+10
Add 10 to both sides.
-5ya-5y=-15a-5
Add -15 and 10 to get -5.
\left(-5a-5\right)y=-15a-5
Combine all terms containing y.
\frac{\left(-5a-5\right)y}{-5a-5}=\frac{-15a-5}{-5a-5}
Divide both sides by -5a-5.
y=\frac{-15a-5}{-5a-5}
Dividing by -5a-5 undoes the multiplication by -5a-5.
y=\frac{3a+1}{a+1}
Divide -15a-5 by -5a-5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}