Solve for x
x=\frac{4y+3}{5}
Solve for y
y=\frac{5x-3}{4}
Graph
Share
Copied to clipboard
-5x=-4y-21+18
Add 18 to both sides.
-5x=-4y-3
Add -21 and 18 to get -3.
\frac{-5x}{-5}=\frac{-4y-3}{-5}
Divide both sides by -5.
x=\frac{-4y-3}{-5}
Dividing by -5 undoes the multiplication by -5.
x=\frac{4y+3}{5}
Divide -4y-3 by -5.
-4y-21=-5x-18
Swap sides so that all variable terms are on the left hand side.
-4y=-5x-18+21
Add 21 to both sides.
-4y=-5x+3
Add -18 and 21 to get 3.
-4y=3-5x
The equation is in standard form.
\frac{-4y}{-4}=\frac{3-5x}{-4}
Divide both sides by -4.
y=\frac{3-5x}{-4}
Dividing by -4 undoes the multiplication by -4.
y=\frac{5x-3}{4}
Divide -5x+3 by -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}