Solve for x (complex solution)
\left\{\begin{matrix}\\x=-\frac{1}{10}=-0.1\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&y=-2\end{matrix}\right.
Solve for y (complex solution)
\left\{\begin{matrix}\\y=-2\text{, }&\text{unconditionally}\\y\in \mathrm{C}\text{, }&x=-\frac{1}{10}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=-\frac{1}{10}=-0.1\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&y=-2\end{matrix}\right.
Solve for y
\left\{\begin{matrix}\\y=-2\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=-\frac{1}{10}\end{matrix}\right.
Graph
Share
Copied to clipboard
-10xy-20x-y=2
Use the distributive property to multiply -5x by 2y+4.
-10xy-20x=2+y
Add y to both sides.
\left(-10y-20\right)x=2+y
Combine all terms containing x.
\left(-10y-20\right)x=y+2
The equation is in standard form.
\frac{\left(-10y-20\right)x}{-10y-20}=\frac{y+2}{-10y-20}
Divide both sides by -10y-20.
x=\frac{y+2}{-10y-20}
Dividing by -10y-20 undoes the multiplication by -10y-20.
x=-\frac{1}{10}
Divide 2+y by -10y-20.
-10xy-20x-y=2
Use the distributive property to multiply -5x by 2y+4.
-10xy-y=2+20x
Add 20x to both sides.
\left(-10x-1\right)y=2+20x
Combine all terms containing y.
\left(-10x-1\right)y=20x+2
The equation is in standard form.
\frac{\left(-10x-1\right)y}{-10x-1}=\frac{20x+2}{-10x-1}
Divide both sides by -1-10x.
y=\frac{20x+2}{-10x-1}
Dividing by -1-10x undoes the multiplication by -1-10x.
y=-2
Divide 2+20x by -1-10x.
-10xy-20x-y=2
Use the distributive property to multiply -5x by 2y+4.
-10xy-20x=2+y
Add y to both sides.
\left(-10y-20\right)x=2+y
Combine all terms containing x.
\left(-10y-20\right)x=y+2
The equation is in standard form.
\frac{\left(-10y-20\right)x}{-10y-20}=\frac{y+2}{-10y-20}
Divide both sides by -10y-20.
x=\frac{y+2}{-10y-20}
Dividing by -10y-20 undoes the multiplication by -10y-20.
x=-\frac{1}{10}
Divide 2+y by -10y-20.
-10xy-20x-y=2
Use the distributive property to multiply -5x by 2y+4.
-10xy-y=2+20x
Add 20x to both sides.
\left(-10x-1\right)y=2+20x
Combine all terms containing y.
\left(-10x-1\right)y=20x+2
The equation is in standard form.
\frac{\left(-10x-1\right)y}{-10x-1}=\frac{20x+2}{-10x-1}
Divide both sides by -1-10x.
y=\frac{20x+2}{-10x-1}
Dividing by -1-10x undoes the multiplication by -1-10x.
y=-2
Divide 2+20x by -1-10x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}